Сила притяжения тела к земле формула. Гравитационные силы

«Физика - 10 класс»

Почему Луна движется вокруг Земли?
Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение - ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести . Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

Физическая величина - ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.


Сила всемирного тяготения.

Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения , действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы - закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них... все планеты тяготеют друг к другу...» И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной .

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m 1 = m 2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными . Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.


Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н м 2 /кг 2 = м 3 /(кг с 2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 10 -11 Н м 2 /кг 2 .

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 10 20 Н.


Зависимость ускорения свободного падения тел от географической широты.


Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.


Равенство инертной и гравитационной масс.


Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса m и.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, - гравитационная масса m r .

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

m и = m r . (3.5)

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

Гравитационная сила – это сила, с которой притягиваются друг к другу тела определённой массы, находящиеся на определённом расстоянии друг от друга.

Английский учёный Исаак Ньютон в 1867 г. открыл закон всемирного тяготения. Это один из фундаментальных законов механики. Суть этого закона в следующем: любые две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Сила притяжения – первая сила, которую почувствовал человек. Это сила, с которой Земля воздействует на все тела, находящиеся на её поверхности. И эту силу любой человек ощущает как собственный вес.

Закон всемирного тяготения


Существует легенда, что закон всемирного тяготения Ньютон открыл совершенно случайно, гуляя вечером по саду своих родителей. Творческие люди постоянно находятся в поиске, а научные открытия - это не мгновенное озарение, а плод длительной умственной работы. Сидя под яблоней, Ньютон осмысливал очередную идею, и вдруг на голову ему упало яблоко. Ньютону было понятно, что яблоко упало в результате действия силы притяжения Земли. «Но почему не падает на Землю Луна? - задумался он. - Значит, на неё действует ещё какая-то сила, удерживающая её на орбите». Так был открыт знаменитый закон всемирного тяготения .

Учёные, изучавшие до этого вращение небесных тел, считали, что небесные тела подчиняются каким-то совершенно другим законам. То есть, предполагалось, что существуют совершенно разные законы притяжения на поверхности Земли и в космосе.

Ньютон объединил эти предполагаемые виды гравитации. Анализируя законы Кеплера, описывающие движение планет, он пришёл к выводу, что сила притяжения возникает между любыми телами. То есть, и на яблоко, упавшее в саду, и на планеты в космосе действуют силы, подчиняющиеся одному закону – закону всемирного тяготения.

Ньютон установил, что законы Кеплера действуют только в том случае, если между планетами существует сила притяжения. И эта сила прямо пропорциональна массам планет и обратно пропорциональная квадрату расстояния между ними.

Сила притяжения рассчитывается по формуле F=G m 1 m 2 / r 2

m 1 – масса первого тела;

m 2 – масса второго тела;

r – расстояние между телами;

G – коэффициент пропорциональности, который называют гравитационной постоянной или постоянной всемирного тяготения .

Его значение определили экспериментально. G = 6,67·10 -11 Нм 2 /кг 2

Если две материальные точки с массой, равной единице массы, находятся на расстоянии, равном единице расстояния, то они притягиваются с силой, равной G .

Силы притяжения и есть гравитационные силы. Их называют ещё силами тяготения . Они подчинены закону всемирного тяготения и проявляются всюду, так как все тела имеют массу.

Сила тяжести


Гравитационная сила вблизи поверхности Земли – это сила, с которой все тела притягиваются к Земле. Её называют силой тяжести . Она считается постоянной, если расстояние тела от поверхности Земли мало по сравнению с радиусом Земли.

Так как сила тяжести, являющаяся гравитационной силой, зависит от массы и радиуса планеты, то на разных планетах она будет разной. Так как радиус Луны меньше радиуса Земли, то и сила притяжения на Луне меньше, чем на Земле в 6 раз. А на Юпитере, наоборот, сила тяжести в 2,4 раза больше силы тяжести на Земле. Но масса тела остаётся постоянной, независимо от того, где её измеряют.

Многие путают значение веса и силы тяжести, считая, что сила тяжести всегда равна весу. Но это не так.

Сила, с которой тело давит на опору или растягивает подвес, это и есть вес. Если убрать опору или подвес, тело начнёт падать с ускорением свободного падения под действием силы тяжести. Сила тяжести пропорциональна массе тела. Она вычисляется по формуле F = mg , где m – масса тела, g – ускорение свободного падения.

Вес тела может изменяться, а иногда и вообще исчезать. Представим себе, что мы находимся в лифте на верхнем этаже. Лифт стоит. В этот момент наш вес Р и сила тяжести F, с которой Земля притягивает нас, равны. Но как только лифт начал двигаться вниз с ускорением а , вес и сила тяжести уже не равны. Согласно второму закону Ньютона mg + P = ma . Р =m g - ma .

Из формулы видно, что наш вес при движении вниз уменьшился.

В момент, когда лифт набрал скорость и стал двигаться без ускорения, наш вес снова равен силе тяжести. А когда лифт стал замедлять своё движение, ускорение а стало отрицательным, и вес увеличился. Наступает перегрузка.

А если тело двигается вниз с ускорением свободного падения, то вес и вовсе станет равным нулю.

При a =g Р =mg-ma= mg - mg=0

Это состояние невесомости.

Итак, все без исключения материальные тела во Вселенной подчиняются закону всемирного тяготения. И планеты вокруг Солнца, и все тела, находящиеся у поверхности Земли.

В природе известны лишь четыре основные фундаментальные силы (их еще называют основными взаимодействиями ) - гравитационное взаимодействие, электромагнитное взаимодействие, сильное взаимодействие и слабое взаимодействие .

Гравитационное взаимодействие является самым слабым из всех. Гравитационные силы связывают воедино части земного шара и это же взаимодействие определяет крупномасштабные события во Вселенной .

Электромагнитное взаимодействие удерживает электроны в атомах и связывает атомы в молекулы. Частным проявлением этих сил являются кулоновские силы , действующие между неподвижными электрическими зарядами.

Сильное взаимодействие связывает нуклоны в ядрах. Это взаимодействие является самым сильным, но действует оно только на весьма коротких расстояниях.

Слабое взаимодействие действует между элементарными частицами и имеет очень малую дальность. Оно проявляется при бета-распаде.

4.1.Закон всемирного тяготения Ньютона

Между двумя материальными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m и М) и обратно пропорциональная квадрату расстояния между ними (r 2 ) и направленная вдоль прямой, проходящей через взаимодействующие тела F = (GmM/r 2)r o ,(1)

здесь r o - единичный вектор, проведенный в направлении действия силы F (рис.1а).

Эта сила называется гравитационной силой (или силой всемирного тяготения ). Гравитационные силы всегда являются силами притяжения . Сила взаимодействия между двумя телами не зависит от среды, в которой находятся тела .

g 1 g 2

Рис.1а Рис.1b Рис.1с

Постоянная G называется гравитационной постоянной . Ее значение установлено опытным путем: G = 6.6720 . 10 -11 Н. м 2 /кг 2 - т.е. два точечных тела массой по 1кг каждое, находящихся на расстоянии 1 м друг от друга, притягиваются с силой 6.6720 . 10 -11 Н. Очень малая величина G как раз и позволяет говорить о слабости гравитационных сил - их следует принимать во внимание только в случае больших масс.

Массы, входящие в уравнение (1), называются гравитационными массами . Этим подчеркивается, что в принципе массы, входящие во второй закон Ньютона (F =m ин a )и в закон всемирного тяготения (F =(Gm гр M гр /r 2)r o ), имеют различную природу. Однако установлено, что отношение m гр / m ин для всех тел одинаково с относительной погрешностью до 10 -10 .

4.2.Гравитационное поле (поле тяготения) материальной точки

Считается, что гравитационное взаимодействие осуществляется с помощью гравитационного поля (поля тяготения) , которое порождается самими телами . Вводится две характеристики этого поля: векторная - и скалярная - потенциал гравитационного поля .

4.2.1.Напряженность гравитационного поля

Пусть имеем материальную точку с массой М. Считается, что вокруг этой массы возникает гравитационное поле. Силовой характеристикой такого поля является напряженность гравитационного поля g , которая определяется из закона всемирного тяготения g = (GM/r 2)r o ,(2)

где r o - единичный вектор, проведенный из материальной точки в направлении действия гравитационной силы. Напряженность гравитационного поля g есть векторная величина и является ускорением, получаемым точечной массой m, внесенной в гравитационное поле, созданным точечной массой М. Действительно, сравнивая (1) и (2), получаем для случая равенства гравитационной и инертной масс F =mg.

Подчеркнем, что величина и направление ускорения, получаемое телом, внесенным в гравитационное поле, не зависит от величины массы внесенного тела . Поскольку основной задачей динамики является определение величины ускорения, получаемого телом под действием внешних сил, то, следовательно, напряженность гравитационного поля полностью и однозначно определяет силовые характеристики гравитационного поля . Зависимость g(r) приведена на рис.2a.

Рис.2а Рис.2b Рис.2с

Поле называется центральным , если во всех точках поля векторы напряженности направлены вдоль прямых, которые пересекаются в одной точка, неподвижной по отношению к какой-либо инерциальной системе отсчета . В частности, гравитационное поле материальной точки является центральным: во всех точках поля векторы g и F =mg , действующие на тело, внесенное в гравитационное поле, направлены радиально от массы М, создающей поле, к точечной массе m (рис.1b).

Закон всемирного тяготения в форме (1) установлен для тел, принимаемых за материальные точки, т.е. для таких тел, размеры которых малы по сравнению с расстоянием между ними. Если же размерами тел пренебречь нельзя, то тела следует разбить на точечные элементы, по формуле (1) подсчитать силы притяжения между всеми попарно взятыми элементами и затем геометрически сложить. Напряженность гравитационного поля системы, состоящей из материальных точек с массами М 1 , М 2 , ..., М n , равна сумме напряженностей полей от каждой из этих масс в отдельности (принцип суперпозиции гравитационных полей ): g =g i , где g i = (GМ i /r i 2)r o i - напряженность поля одной массы М i .

Графическое изображение гравитационного поля с помощью векторов напряженности g в различных точках поля очень неудобно: для систем, состоящих из многих материальных точек, вектора напряженности накладываются друг на друга и получается весьма запутанная картина. Поэтому для графического изображения гравитационного поля используют силовые линии (линии напряженности) , которые проводят таким образом, что вектор напряженности направлен по касательной к силовой линии . Линии напряженности считаются направленными так же, как вектор g (рис.1с), т.е. силовые линии оканчиваются на материальной точке . Так как в каждой точке пространства вектор напряженности имеет лишь одно направление , то линии напряженности никогда не пересекаются . Для материальной точки силовые линии представляют собой радиальные прямые, входящие в точку (рис.1b).

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности поля, эти линии проводят с определенной густотой: число линий напряженности, пронизывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектор g .

Гравитация, она же притяжение или тяготение, - это универсальное свойство материи, которым обладают все предметы и тела во Вселенной. Суть гравитации залучается в том, что все материальные тела притягивают к себе все другие тела, находящиеся вокруг.

Земное притяжение

Если гравитация - это общее понятие и качество, которым обладают все предметы во Вселенной, то земное притяжение - это частный случай этого всеобъемлющего явления. Земля притягивает к себе все материальные объекты, находящиеся на ней. Благодаря этому люди и животные могут спокойно перемещаться по земле, реки, моря и океаны - оставаться в пределах своих берегов, а воздух - не летать по бескрайним просторам Космоса, а образовывать атмосферу нашей планеты.

Возникает справедливый вопрос: если все предметы обладают гравитацией, почему Земля притягивает к себе людей и животных, а не наоборот? Во-первых, мы тоже притягиваем к себе Землю, просто, по сравнению с ее силой притяжения наша гравитация ничтожно мала. Во-вторых, сила гравитации прямо пропорционально зависит от массы тела: чем меньше масса тела, тем ниже его гравитационные силы.

Второй показатель, от которого зависит сила притяжения - это расстояние между предметами: чем больше расстояние, тем меньше действие гравитации. В том числе благодаря этому, планеты движутся на своих орбитах, а не падают друг на друга.

Примечательно, что своей сферической формой Земля, Луна, Солнце и другие планеты обязаны именно силе тяготения. Она действует в направлении центра, подтягивая к нему вещество, составляющее «тело» планеты.

Гравитационное поле Земли

Гравитационное поле Земли - это силовое энергетическое поле, которое образуется вокруг нашей планеты благодаря действию двух сил:

  • гравитации;
  • центробежной силе, которая своим появление обязана вращению Земли вокруг своей оси (суточное вращение).

Поскольку и гравитация, и центробежная сила действуют постоянно, то и гравитационное поле является постоянным явлением.

Незначительное воздействие на поле оказывают силы тяготения Солнца, Луны и некоторых других небесных тел, а также атмосферных масс Земли.

Закон всемирного тяготения и сэр Исаак Ньютон

Английский физик, сэр Исаак Ньютон, согласно известной легенде, однажды гуляя по саду днем, увидел на небе Луну. В это же время с ветки упало яблоко. Ньютон тогда занимался изучением закона движения и знал, что яблоко падает под воздействием гравитационного поля, а Луна вращается по орбите вокруг Земли.

И тут в голову гениальному ученому, озаренную инсайтом, пришла мысль, что, возможно, яблоко падает на землю, подчиняясь той же силе, благодаря которой Луна находится на своей орбите, а не носится беспорядочно по всей галактике. Так был открыт закон всемирного тяготения, он же Третий закон Ньютона.

На языке математических формул этот закон выглядит так:

F = GMm/D 2 ,

где F - сила взаимного тяготения между двумя телами;

M - масса первого тела;

m - масса второго тела;

D 2 - расстояние между двумя телами;

G - гравитационная постоянная, равная 6,67х10 -11 .

Каждый человек в своей жизни не раз сталкивался с этим понятием, ведь гравитация это основа не только современной физики, но и ряда других смежных наук.

Изучением притяжения тел занимались многие учёные с античных времен, однако главное открытие приписывается Ньютону и описывается как известная каждому история с упавшим на голову фруктом.

Что такое гравитация простыми словами

Гравитация представляет собой притяжение между несколькими предметами во всей Вселенной. Природа явления бывает разной, так как определяется массой каждого из них и протяженностью между, то есть дистанцией.

Теория Ньютона была основана на том, что и на падающий фрукт, и на спутник нашей планеты действует одна и та же сила — притяжение к Земле. А не упал спутник на земное пространство именно из-за своей массы и удалённости.

Гравитационное поле

Гравитационное поле являет собой пространство, в рамках которого происходит взаимодействие тел по законам притяжения.

Эйнштейновская теория относительности описывает поле, как определенное свойство времени и пространства, характерно проявляющееся при появлении физических объектов.

Гравитационная волна

Это определенного рода изменения полей, которые образуются в результате излучения от движущихся объектов. Они отрываются от предмета и распространяются волновым эффектом.

Теории гравитации

Классической теорией является ньютоновская. Однако, она была несовершенна и впоследствии появились альтернативные варианты.

К ним относятся:

  • метрические теории;
  • неметрические;
  • векторные;
  • Ле-Сажа, который впервые описал фазы;
  • квантовая гравитация.

Сегодня существует несколько десятков различных теорий, все они либо дополняют друг друга, либо рассматривают явления с другой стороны.

Стоит отметить: идеального варианта пока не существует, но постоянные разработки открывают больше вариантов ответов в отношении притяжения тел.

Сила гравитационного притяжения

Базовый расчет следующий – сила тяготения пропорциональна умножению массы тела на другую, между которыми она определяется. Эта формула выражена и так: сила обратно пропорциональна дистанции между объектами, возведенными в квадрат.

Гравитационное поле – потенциально, а значит сохраняется кинетическая энергия. Этот факт упрощает решение задач, в которых измеряется сила притяжения.

Гравитация в космосе

Несмотря на заблуждение многих, в космосе есть гравитация. Она ниже, чем на Земле, но все же присутствует.

Что касается космонавтов, которые на первый взгляд летают, то они в действительности находятся в состоянии медленного падения. Визуально, кажется, что их ничего не притягивает, но на практике они испытывают гравитацию.

Сила притяжения зависит от удаленности, но каким бы большим не было расстояние между объектами, они продолжат тянуться друг к другу. Взаимное притяжение никогда не будет равным нулю.

Гравитация в Солнечной системе

В солнечной системе не только Земля обладает гравитацией. Планеты, а также и Солнце, притягивают к себе объекты.

Так как сила определятся массой предмета, то наибольший показатель у Солнца. Например, если у нашей планеты показатель равен единице, то у светила показатель будет почти равен двадцати восьми.

Следующим, после Солнца, по тяжести является Юпитер , поэтому сила притяжения у него в три раза выше, чем у Земли. Наименьший параметр у Плутона.

Для наглядности обозначим так, в теории на Солнце среднестатистический человек весил бы примерно две тонны, а вот на самой маленькой планете нашей системы – всего четыре килограмма.

От чего зависит гравитация планеты

Гравитационная тяга, как уже указывалось выше – это мощь, с которой планета тянет к себе предметы, расположенные на ее поверхности.

Сила притяжения зависит от тяжести объекта, самой планеты и дистанции, находящейся между ними. Если много километров – гравитация низкая, но она все равно удерживает объекты на связи.

Несколько важных и увлекательных аспектов, связанных с гравитацией и ее свойствами, которые стоит объяснить ребенку:

  1. Явление все притягивает, но никогда не отталкивает – это отличает ее от других физических явлений.
  2. Не бывает нулевого показателя. Невозможно смоделировать ситуацию, в которой не действует давление, то есть не работает гравитация.
  3. Земля спадает со средней скоростью 11,2 километра в секунду, достигнув этой скорости можно покинуть притягивающий колодец планеты.
  4. Факт существования гравитационных волн не был доказан научно, это лишь догадка. Если когда-либо они станут видимыми, то человечеству откроются многие загадки космоса, связанные со взаимодействием тел.

В соответствии с теорией базовой относительности такого ученого, как Эйнштейн, гравитация представляет собой искривление базовых параметров существования материального мира, которое представляет собой основу Вселенной.

Гравитация – это взаимное притяжение двух объектов. Сила взаимодействия зависит от тяжести тел и дистанции между ними. Пока не все секреты явления раскрыты, но уже сегодня существует несколько десятков теорий, описывающих понятие и его свойства.

Сложность изучаемых объектов влияет на время исследования. В большинстве случаев просто берется зависимость массы и дистанции.