Гравитация - что это такое? Сила гравитации. Гравитация Земли

Наверняка вы слышали, что гравитация – это не сила. И это правда. Однако же эта правда оставляет много вопросов. Например, мы обычно говорим, что гравитация «притягивает» объекты. На уроках физики нам говорили, что гравитация притягивает объекты к центру Земли. Но как это возможно? Как гравитация может не быть силой, но при этом притягивать объекты?

Прежде всего, нужно усвоить, что правильный термин - это «ускорение», а не «притяжение». На самом деле, гравитация вовсе не притягивает объекты, она деформирует систему пространства-времени (система, по принципам которой мы живем), объекты следуют за образовавшимися в результате деформации волнами и иногда могут ускоряться.

Благодаря Альберту Эйнштейну и его теории относительности, мы знаем, что пространство-время меняется под воздействием энергии. И самая важная часть этого уравнения - это масса. Энергия массы объекта заставляет пространство-время меняться. Масса сгибает пространство-время, и получившиеся изгибы направляют энергию. Таким образом, вернее думать о гравитации не как о силе, а как об искривлении пространства-времени. Как резиновое покрытие искривляется под шаром для боулинга, так пространство-время искривляется массивными объектами.

Так же, как автомобиль едет по дороге с различными изгибами и поворотами, объекты перемещаются по подобным изгибам и искривлениям в пространстве и времени. И точно так же, как автомобиль ускоряется, когда спускается вниз с холма, массивные объекты создают экстремальные виражи в пространстве и времени. Сила тяжести способна разгонять объекты, когда они входят в глубокие гравитационные колодцы. Этот путь, по которому объекты следуют через пространство-время, называют «геодезической траекторией».

Чтобы лучше понять, как работает гравитация и как она может ускорять объекты, рассмотрим расположение Земли и Луны относительно друг друга. Земля - это довольно массивный объект, по крайней мере, по сравнению с Луной, и наша планета заставляет пространство-время изгибаться. Луна вращается вокруг Земли из-за перекосов в пространстве и времени, которые вызваны массой планеты. Таким образом, Луна просто путешествует вдоль образовавшегося изгиба в пространстве-времени, который мы называем орбитой. Луна не чувствует никакой силы, действующей на нее, она просто следует по определенному возникшему пути.

Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом - в нашей статье.

Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.

Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Гравитация – физическое фундаментальное взаимодействие

Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.

Фундаментальные взаимодействия:

  • гравитация;
  • электромагнетизм;
  • сильное взаимодействие;
  • слабое взаимодействие.
Гравитация – самое слабое из четырех фундаментальных взаимодействий.

На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.

Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.

В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.

До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.

Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.

Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.

Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:

Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.

Формула силы притяжения между телами:

G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.

Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.


По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь.

Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.

Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.

Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.

Гравитация в ОТО

Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.

Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?

В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы. Таким образом гравитация – не силовое взаимодействие.


Каково действие гравитации? Попробуем описать его с использованием аналогии.

Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие гравитационных волн

Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.

Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.

Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.


Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.

Подходящее событие для регистрации гравитационной волны - слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.

Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.

Гравитационные волны подтвердили справедливость ОТО.

Гравитация и элементарные частицы

В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.

За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.

Напоследок приведем несколько любопытных фактов о гравитации.

10 фактов о гравитации

  1. Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
  2. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость.
  3. Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
  4. Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность. Это одна из самых важных проблем современной физики.
  5. Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
  6. Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.
  7. Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
  8. Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
  9. Гравитация всегда притягивает и никогда не отталкивает.
  10. Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.

Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения. Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис . Мы поможем учиться легко при самых больших нагрузках!

Гравитация — это «искривление» пространства. Чем больше масса, тем большее «искривление» пространства и, следовательно, в это «искривление» «скатываются» более легкие объекты. Все объекты, обращающиеся вокруг Солнца, удерживаются на своих орбитах с помощью гравитации. Но она не только выполняет функции некоей привязи, но ещё и стала той силой, что создала эти объекты. Сила тяготения не позволяет планетам выбирать путь по своему усмотрению, закольцевав их орбиты. Но зависимость от этой силы уменьшается экспоненциально – при удалении в два раза, воздействие ослабляется в четыре раза, а утроение удаления ослабляет силу уже в девять раз.

Ньютон напрямую ассоциировал гравитацию с силой тяжести. К телу приложена сила тяжести, источником которой является иное тело (или тела), а гравитационного поля, как такового, просто не существует. Поскольку гравитация относится к прямому взаимодействию тел, то и определяется она Законом всемирного тяготения. Гравитационному полю придан условный характер, необходимый лишь для расчётов. Для земных условий это вполне допустимо.

Гравитация от Эйнштейна

Гравитационное воздействие описывал ещё Аристотель. Он полагал, что скорость падения предмета зависима от его массы. Но лишь Галилей смог понять, что любое тело имеет равное значение ускорения. А Эйнштейн развил это утверждение в своей теории относительности, описав гравитацию с понятием геометрии пространства-времени.

В классическом представлении сила гравитационного взаимодействия двух точек имеет вид зависимости массы этих точек от расстояния в квадрате между ними. Чем больше тело, тем большее гравитационное поле оно может создать.

Хотя гравитация – взаимодействие очень слабое, но действие её распространяется на любые расстояния .

Гравитационное притяжение универсально по характеру воздействия на материю, нет объектов, не имеющих его. Эйнштейн постулировал, что гравитационные эффекты обуславливаются не силовыми влияниями тела или поля, находящегося в пространстве-времени, а изменениями в самом пространстве-времени. Всё это происходит из-за наличия массы-энергии. По теории Эйнштейна, масса и энергия – это единый параметр тел. Их связывает всем известная формула: Е = m с² Два массивных тела, взаимодействуя между собой, будут искривлять пространство. Но почему происходит это искривление, Эйнштейн ответа дать не смог. Гравитация, в силу своей глобальности, отвечает за явления крупных масштабов. Это структуры, расширяющаяся Вселенная. Но и простые факты астрономии, – планетные орбиты, земное притяжение, падение тел, – тоже зависимы от гравитации.

Небесная механика

Эта часть механики изучает движение тел, находящихся в ничем не заполненном пространстве, на которые действует только гравитация. Самая простая задача раздела – обоснование гравитационного влияния двух тел, точечных или сферических, в пустом пространстве. Если же тел, которые взаимодействуют друг на друга, большее количество, задача усложняется. Численное решение приводит к неустойчивости решений от начальных условий. То есть, применив её к нашей планетной системе, мы не сумеем предугадать планетные движения на периоды, превысившие сто миллионов лет. Описание долговременного поведения системы, состоящей из многих притягивающихся тел с похожей массой, пока невозможно. Этому мешает понятие: динамический хаос.

Гравитационные волны

Гравитационные волны - изменения гравитационного поля, распространяющиеся подобно волнам. Излучаются движущимися массами, но после излучения отрываются от них и существуют независимо от этих масс. Математически связаны с возмущением метрики пространства-времени и могут быть описаны как «рябь пространства-времени». Гравитационные волны предсказываются общей теорией относительности. Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами обсерватории LIGO, на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух чёрных дыр и образования одной более массивной вращающейся чёрной дыры.

Гравитон

Поскольку гравитационное взаимодействие присутствует, оно должно как-то переноситься. В 30-х годах ХХ века кандидатом в переносчики стал гравитон. Эта частица пока ещё гипотетическая, но она должна иметь спин 2 и два вероятных направления поляризации. Некоторые физики упорно отвергают существование этой частицы. Они предполагают: если гравитоны имеются, то их должны излучать чёрные дыры, а это вступает в противоречия с ОТО. Но попытки расширить стандартную модель такими частицами сопряжены с реальными трудностями в области высоких энергий. На решении этой задачи основаны некоторые разрабатываемые теории квантовой гравитации. По их положениям гравитоны - состояние струн, а отнюдь не точечные частицы. Но низкие энергии их всё же причисляют к частицам точечным. Пока гравитоны обнаружены не были, потому что гравитационные влияния их необычайно слабы.

Квантовая гравитация

Универсальной квантовой теории, объяснившей бы само понятие гравитации, ещё не разработано. Для представления гравитационного взаимодействия было бы вероятно предложить гравитонный обмен, в котором гравитоны выступают в качестве калибровочных бозонов со спином 2. Но такая теория не считается удовлетворительной. На существующее время есть несколько подходов, разрешающих квантование гравитации. Эти подходы считаются достаточно перспективными.

  • Теория струн. Она заменяет частицы фона пространства-времени на и браны (подобие струн). Для решения многомерных задач, браны видятся как частицы уже многомерные, но в тоже время они и структуры пространства-времени. Гравитоны здесь становятся состоянием струн, а не отдельными частицами. Хотя низкие энергии их к ним и причисляют.
  • Петлевая квантовая гравитация . Здесь время и пространство являются дискретными частями. Они не привязаны к фону пространства-времени, являясь квантовыми пространственными ячейками. Они между собой соединены таким образом, что в малых временных масштабах представляются дискретной структурой пространства. При укрупнении масштабов, части плавно становятся непрерывным пространством-временем. Петлевая гравитация способна описать сущность Большого взрыва, а также пролить свет на его преддверие. Это даже позволяет обходиться без привлечения .

Сильные гравитационные поля

В очень сильных гравитационных полях могут быть проявления некоторых эффектов ОТО:

  • закон тяготения отклоняется от ньютоновского
  • появляются гравитационные волны
  • есть эффекты нелинейности
  • видимое пространство-время изменяет свою геометрию
  • возможно появление сингулярностей и рождение чёрных дыр.

Но такие проявления могут иметь место лишь в том случае, если гравитация имеет силу бесконечно большую. Пока что наиболее плотными объектами Вселенной, которые удалось обнаружить, являются . В одной из многих теорий гравитационное поле рассматривается в качестве основы для любого поля – магнитного, электрического, глюонного. В таком случае гравитоны становятся базовыми элементами материи. Ну, а чёрная дыра является гравитонной , где силой тяготения разрушаются абсолютно все элементарные частицы, кроме гравитонов. И остаётся лишь одно свойство – гравитация.

Гравитационный коллапс

Когда массивное тело, испытывая гравитационные силы, катастрофически быстро сжимается, происходит его коллапс. Так может закончиться жизнь звезды, имеющей массу более трёх солнечных. Когда в звездах заканчивается запас топлива для продолжения термоядерного процесса, их механическая устойчивость нарушается, и происходит стремительное, с ускорением, сжатие к центральной части. Если давление внутри звезды, которое постоянно растёт, сможет остановить сжатие, то центральная часть светила превратится в нейтронную звезду. При этом возможно сбрасывание оболочки и вспыхивание сверхновой. Но при превышении звездой массы, определённой пределом Оппенгеймера-Волкова, коллапс закончится преобразованием её в чёрную дыру. Значение данного предела пока точно не установлено.

Некоторые парадоксы

  1. Вращающийся вокруг Земли спутник, по отношению к планете, невесом. И всё, что в нём находится, также невесомо. , относительно , опять же невесома, но тела на её поверхности весом уже обладают. Тоже самое и с Землёй. Она невесома относительно , но мы на ней вес ощущаем. Солнце тоже невесомо относительно галактического ядра. И так – до бесконечности.
  2. В звёздах, в процессе термоядерных реакций, создаётся огромное давление. Но оно сдерживается гравитационными силами. То есть, существование звезды возможно потому, что присутствует динамическое равновесие: температура-давление – гравитационные силы.
  3. В чёрной дыре прекращаются все процессы, кроме одного – гравитации. Её ничто не может поглотить или искривить.

Не смотря на то, что гравитация – это слабейшее взаимодействие между объектами во Вселенной, ее значение в физике и астрономии огромно, так как она способна оказывать влияние на физические объекты на любом расстоянии в космосе.

Если вы увлекаетесь астрономией, вы наверняка задумывались над вопросом, что собой представляет такое понятие, как гравитация или закон всемирного тяготения. Гравитация – это универсальное фундаментальное взаимодействие между всеми объектами во Вселенной.

Открытие закона гравитации приписывают знаменитому английскому физику Исааку Ньютону. Наверное, многим из вас известна история с яблоком, упавшим на голову знаменитому ученому. Тем не менее, если заглянуть вглубь истории, можно увидеть, что о наличии гравитации задумывались еще задолго до его эпохи философы и ученые древности, например, Эпикур. Тем не менее, именно Ньютон впервые описал гравитационное взаимодействие между физическими телами в рамках классической механики. Его теорию развил другой знаменитый ученый – Альберт Эйнштейн, который в своей общей теории относительности более точно описал влияние гравитации в космосе, а также ее роль в пространственно-временном континууме.

Закон всемирного тяготения Ньютона говорит, что сила гравитационного притяжения между двумя точками массы, разделенными расстоянием обратно пропорциональна квадрату расстояния и прямо пропорциональна обеим массам. Сила гравитации является дальнодействующей. То есть, в независимости от того, как будет двигаться тело, обладающее массой, в классической механике его гравитационный потенциал будет зависеть сугубо от положения этого объекта в данный момент времени. Чем больше масса объекта, тем больше его гравитационное поле – тем более мощной гравитационной силой он обладает. Такие космически объекты, как галактики, звезды и планеты обладают наибольшей силой притяжения и соответственно достаточно сильными гравитационными полями.

Гравитационные поля

Гравитационное поле Земли

Гравитационное поле – это расстояние, в пределах которого осуществляется гравитационное взаимодействие между объектами во Вселенной. Чем больше масса объекта, тем сильнее его гравитационное поле – тем ощутимее его воздействие на другие физические тела в пределах определенного пространства. Гравитационное поле объекта потенциально. Суть предыдущего утверждения заключается в том, что если ввести потенциальную энергию притяжения между двумя телами, то она не изменится после перемещения последних по замкнутому контуру. Отсюда выплывает еще один знаменитый закон сохранения суммы потенциальной и кинетической энергии в замкнутом контуре.

В материальном мире гравитационное поле имеет огромное значения. Им обладают все материальные объекты во Вселенной, у которых есть масса. Гравитационное поле способно влиять не только на материю, но и на энергию. Именно за счет влияния гравитационных полей таких крупных космических объектов, как черные дыры, квазары и сверхмассивные звезды, образуются солнечные системы, галактики и другие астрономические скопления, которым свойственна логическая структура.

Последние научные данные показывают, что знаменитый эффект расширения Вселенной так же основан на законах гравитационного взаимодействия. В частности расширению Вселенной способствуют мощные гравитационные поля, как небольших, так и самых крупных ее объектов.

Гравитационное излучение в двойной системе

Гравитационное излучение или гравитационная волна – термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном. Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением. Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.

Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект. Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение. Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.

В современной физике существует два понятия механики: классическая и квантовая. Квантовая механика была выведена относительно недавно и принципиально отличается от механики классической. В квантовой механике у объектов (квантов) нет определенных положений и скоростей, все здесь базируется на вероятности. То есть, объект может занимать определенное место в пространстве в определенный момент времени. Куда переместиться он дальше, достоверно определить нельзя, а только с высокой долей вероятности.

Интересный эффект гравитации заключается в том, что она способна искривлять пространственно-временной континуум. Теория Эйнштейна гласит, что в пространстве вокруг сгустка энергии или любого материального вещества пространство-время искривляется. Соответственно меняется траектория частиц, которые попадают под воздействие гравитационного поля этого вещества, что позволяет с высокой долей вероятности предсказать траекторию их движения.

Теории гравитации

Сегодня ученым известно свыше десятка различных теорий гравитации. Их подразделяют на классические и альтернативные теории. Наиболее известными представителем первых является классическая теория гравитации Исаака Ньютона, которая была придумана известным британским физиком еще в 1666 году. Суть ее заключается в том, что массивное тело в механике порождает вокруг себя гравитационное поле, которое притягивает к себе менее крупные объекты. В свою очередь последние также обладают гравитационным полем, как и любые другие материальные объекты во Вселенной.

Следующая популярная теория гравитации была придумана всемирно известным германским ученым Альбертом Эйнштейном в начале XX века. Эйнштейну удалось более точно описать гравитацию, как явление, а также объяснить ее действие не только в классической механике, но и в квантовом мире. Его общая теория относительности описывает способность такой силы, как гравитация, влиять на пространственно-временной континуум, а также на траекторию движения элементарных частиц в пространстве.

Среди альтернативных теорий гравитации наибольшего внимания, пожалуй, заслуживает релятивистская теория, которая была придумана нашим соотечественником, знаменитым физиком А.А. Логуновым. В отличие от Эйнштейна, Логунов утверждал, что гравитация – это не геометрическое, а реальное, достаточно сильное физическое силовое поле. Среди альтернативных теорий гравитации известны также скалярная, биметрическая, квазилинейная и другие.

  1. Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
  2. Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.
  3. Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей – Юпитер.
  4. Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.
  5. Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
  6. Сила гравитации на Земле одинакова не во всех уголках нашей планеты. К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.

1 907

Гравитация (сила тяжести) – это сила, которая притягивает два тела друг к другу, сила, которая заставляет яблоки падать к земле, а планеты вращаться вокруг Солнца. Чем массивнее объект, тем сильнее его гравитационное притяжение.

Фундаментальная сила

Гравитация является одной из четырех фундаментальных сил, наряду с электромагнитными, и сильными и слабыми ядерными взаимодействиями.

Это то, что заставляет предметы иметь вес. Когда вы взвешиваете себя, шкала говорит вам, насколько гравитация действует на ваше тело. На Земле сила тяжести составляет 9,8 метра в секунду в квадрате, или 9,8 м / с 2 .

Такие философы, как Аристотель, считали, что более тяжелые предметы ускоряются по направлению к земле быстрее. Но более поздние эксперименты показали, что это не так. Причина того, что перо будет падать медленнее, чем шар для боулинга, обусловлен сопротивлением воздуха, которое действует в противоположном направлении, как ускорение силы тяжести.

Закон всемирного тяготения Ньютона гласит, что сила тяжести прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.

Исаак Ньютон разработал свою теорию всемирного тяготения в 1680-х годах. Он обнаружил, что гравитация действует на все вещество и является функцией как массы, так и расстояния. Каждый объект притягивает другой объект с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Теория относительности

Ньютон опубликовал свою работу по гравитации в 1687 году, которая считалась лучшим объяснением, пока Эйнштейн не придумал свою Общую теорию относительности в 1915 году. В теории Эйнштейна гравитация – это не сила, а скорее следствие того, что материя искажается в пространство-времени. Одно из предсказаний Общей теории относительности состоит в том, что свет будет сгибаться вокруг массивных объектов.

Забавные факты

  • Гравитация составляет около 16 процентов от земной, Марс имеет около 38 процентов земного тяготения, в то время как самая большая планета в , Юпитер, имеет в 2,5 раза больше гравитации Земли.
  • Хотя никто не «открыл» гравитацию, по легенде, знаменитый астроном Галилео Галилей сделал некоторые из самых ранних экспериментов с гравитацией, сбросив шары с Пизанской башни, чтобы увидеть, как быстро они упали.
  • Исааку Ньютону было всего 23 года и он вернулся из университета, когда заметил яблоко, падавшее в его саду, и принялся разгадывать тайны гравитации. (Возможно, это миф о том, что яблоко упало ему на голову).
  • Ранняя мера теории относительности Эйнштейна состояла в изгибе звездного света вблизи Солнца во время солнечного затмения 29 мая 1919 года.