Замечательные точки треугольника. Исследовательский проект замечательные точки треугольника Как начертить 4 замечательных точки в треугольнике

Содержание

Введение………………………………………………………………………………………3

Глава1.

1.1 Треугольник………………………………………………………………………………..4

1.2. Медианы треугольника

1.4. Высоты в треугольнике

Заключение

Список использованной литературы

Буклет

Введение

Геометрия - это раздел математики, который рассматривает различные фигуры и их свойства. Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии; но он не только символ, треугольник - атом геометрии.

В своей работе я рассмотрю свойства точек пересечения биссектрис, медиан и высот треугольника, расскажу о замечательных их свойствах и линиях треугольника.

К числу таких точек, изучаемых в школьном курсе геометрии, относятся:

а) точка пересечения биссектрис (центр вписанной окружности);

б) точка пересечения серединных перпендикуляров (центр описанной окружности);

в) точка пересечения высот (ортоцентр);

г) точка пересечения медиан (центроид).

Актуальность: расширить свои знания о треугольнике, свойствах его замечательных точек.

Цель: исследование треугольника на его замечательные точки, изучение их классификаций и свойств.

Задачи:

1. Изучить необходимую литературу

2. Изучить классификацию замечательных точек треугольника

3. Уметь строить замечательные точки треугольника.

4. Обобщить изученный материал для оформления буклета.

Гипотеза проекта:

умение находить замечательные точки в любом треугольнике, позволяет решать геометрические задачи на построение.

Глава 1. Исторические сведения о замечательных точках треугольника

В четвертой книге "Начал" Евклид решает задачу: "Вписать круг в данный треугольник". Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга. В "Началах" не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово "ортос" означает "прямой", "правильный"). Это предложение было, однако, известно Архимеду, Паппу, Проклу.

Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы "замечательными" или "особенными" точками треугольника.

Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – "геометрии треугольника" или "новой геометрии треугольника", одним из родоначальников которой стал Леонард Эйлер. В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже "прямой Эйлера".

    1. Треугольник

Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки - вершины треугольника, отрезки - стороны треугольника.

В А, В, С - вершины

АВ, ВС, СА - стороны

А С

С каждым треугольником связаны четыре точки:

    Точка пересечения медиан;

    Точка пересечения биссектрис;

    Точка пересечения высот.

    Точка пересечения серединных перпендикуляров;

1.2. Медианы треугольника

Медина треугольника ― , соединяющий вершину с серединой противоположной стороны (Рисунок 1). Точка пересечения медианы со стороной треугольника называется основанием медианы.

Рисунок 1. Медианы треугольника

Построим середины сторон треугольника и проведем отрезки, соединяющую каждую из вершин с серединой противолежащей стороны. Такие отрезки называются медианой.

И вновь мы наблюдаем, что и эти отрезки пересекаются в одной точке. Если мы измерим длины получившихся отрезков медиан, то можно проверить еще одно свойство: точка пересечения медиан делит все медианы в отношении 2:1, считая от вершин. И еще, треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести (барицентр). Центр равных масс иногда называют центроидом. Поэтому свойства медиан треугольника можно сформулировать так: медианы треугольника пересекаются в центре тяжести и точкой пересечения делятся в отношении 2:1, считая от вершины.

1.3. Биссектрисы треугольника

Биссектрисой называется биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной. У треугольника существуют три биссектрисы, соответствующие трём его вершинам (Рисунок 2).

Рисунок 2. Биссектриса треугольника

В произвольном треугольнике ABC проведем биссектрисы его углов. И вновь при точном построении все три биссектрисы пересекутся в одной точке D. Точка D – тоже необычная: она равноудалена от всех трех сторон треугольника. В этом можно убедиться, если опустить перпендикуляры DA 1, DB 1 и DC1 на стороны треугольника. Все они равны между собой: DA1=DB1=DC1.

Если провести окружность с центром в точке D и радиусом DA 1, то она будет касаться всех трех сторон треугольника (то есть будет иметь с каждым из них только одну общую точку). Такая окружность называется вписанной в треугольник. Итак, биссектрисы углов треугольника пересекаются в центре вписанной окружности.

1.4. Высоты в треугольнике

Высота треугольника - , опущенный из вершины на противоположную сторону или прямую, совпадающую с противоположной стороной. В зависимости от типа треугольника высота может содержаться внутри треугольника (для треугольника), совпадать с его стороной (являться треугольника) или проходить вне треугольника у тупоугольного треугольника (Рисунок 3).

Рисунок 3. Высоты в треугольниках

    Если в треугольнике построить три высоты, то все они пересекутся в одной точке H. Эта точка называется ортоцентром. (Рисунок 4).

С помощью построений можно проверить, что в зависимости от вида треугольника ортоцентр располагается по – разному:

    у остроугольного треугольника – внутри;

    у прямоугольного – на гипотенузе;

    у тупоугольного – снаружи.

Рисунок 4. Ортоцентр треугольника

Таким образом, мы познакомились еще с одной замечательной точкой треугольника и можем сказать, что: высоты треугольника пересекаются в ортоцентре.

1.5. Серединные перпендикуляры к сторонам треугольника

Серединный перпендикуляр к отрезку - это прямая, перпендикулярная данному отрезку и проходящая через его середину.

Начертим произвольный треугольник ABC и проведем серединные перпендикуляры к его сторонам. Если построение выполнено точно, то все перпендикуляры пересекутся в одной точке – точке О. Эта точка равноудалена от всех вершин треугольника. Другими словами, если провести окружность с центром в точке О, проходящую через одну из вершин треугольника, то она пройдет и через две другие его вершины.

Окружность, проходящая через все вершины треугольника, называется описанной около него. Поэтому установленное свойство треугольника можно сформулировать так: серединные перпендикуляры к сторонам треугольника пересекаются в центре описанной окружности (Рисунок 5).

Рисунок 5. Треугольник вписанный в окружность

Глава 2. Исследование замечательных точек треугольника.

Исследование высоты в треугольниках

Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

Высоты остроугольного треугольника расположены строго внутри треугольника.

Соответственно, точка пересечения высот также находится внутри треугольника.

В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).

Высота, проведенная к гипотенузе, лежит внутри треугольника.

AC - высота, проведенная из вершины С к стороне AB.

AB - высота, проведенная из вершины B к стороне AC.

AK - высота, проведенная из вершины прямого угла А к гипотенузе ВС.

Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А - ортоцентр).

В тупоугольном треугольника внутри треугольника лежит только одна высота - та, которая проведена из вершины тупого угла.

Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.

AK - высота, проведенная к стороне BC.

BF - высота, проведенная к продолжению стороны АС.

CD - высота, проведенная к продолжению стороны AB.

Точка пересечения высот тупоугольного треугольника также находится вне треугольника:

H - ортоцентр треугольника ABC.

Исследование биссектрис в треугольнике

Биссектриса треугольника является частью биссектрисы угла треугольника (луча), которая находится внутри треугольника.

Все три биссектрисы треугольника пересекаются в одной точке.


Точка пересечения биссектрис в остроугольном, тупоугольном и прямоугольном треугольниках, является центром вписанной в треугольник окружности и находится внутри.

Исследование медиан в треугольнике

Так как у треугольника три вершины и три стороны, то и отрезков, соединяющих вершину и середину противолежащей стороны, тоже три.


Исследовав эти треугольники я понял, что в любом треугольнике медианы пересекаются в одной точке. Эту точку называют центром тяжести треугольника.

Исследование серединных перпендикуляров к стороне треугольника

Серединный перпендикуляр треугольника – это перпендикуляр, проведенный к середине стороны треугольника.

Три серединных перпендикуляра треугольника пересекаются в одной точке, являются центром описанной окружности.

Точка пересечения серединных перпендикуляров в остроугольном треугольнике лежит внутри треугольника; в тупоугольном – вне треугольника; в прямоугольном – на середине гипотенузы.

Заключение

В ходе проделанной работы мы приходим к следующим выводам:

    Цель достигнута: исследовали треугольник и нашли его замечательные точки.

    Поставленные задачи решены:

1). Изучили необходимую литературу;

2). Изучили классификацию замечательных точек треугольника;

3). Научились строить замечательные точки треугольника;

4). Обобщили изученный материал для оформления буклета.

Гипотеза, что умение находить замечательные точки треугольника, помогает в решении задач на построение подтвердилась.

В работе последовательно излагаются приемы построения замечательных точек треугольника, приведены исторические сведения о геометрических построениях.

Сведения из данной работы могут пригодиться на уроках геометрии в 7 классе. Буклет может стать справочником по геометрии по изложенной теме.

Список литературы

    Учебник . Л.С. Атанасян «Геометрия 7-9 классы Мнемозина,2015.

    Википедияhttps://ru.wikipedia.org/wiki/Геометрия#/media/File:Euclid%27s_postulates.png

    Портал Алые Паруса

    Ведущий образовательный портал России http://cendomzn.ucoz.ru/index/0-15157

Урок геометрии в 8-м классе разработан на основе модели позиционного обучения.

Цели урока:

  • Изучение теоретического материала по теме «Четыре замечательные точки треугольника»;
  • Развитие мышления, логики, речи, воображения обучающихся, умения анализировать и оценивать работу;
  • Развитие умения групповой работы;
  • Воспитание чувства ответственности за качество и результат выполняемой работы.

Оборудование:

  • карточки с названиями групп;
  • карточки с заданиями для каждой группы;
  • бумага формата А-4 для записи результатов работы групп;
  • эпиграф, записанный на доске.

Ход урока

1. Организационный момент.

2. Определение целей и темы урока.

Исторически геометрия началась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Школьная геометрия только тогда может стать интересной и содержательной, только тогда может стать собственно геометрией, когда в ней появляется глубокое и всестороннее изучение треугольника. Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения – никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника.

Кто не слышал о Бермудском треугольнике, в котором бесследно исчезают корабли и самолёты? А ведь сам треугольник таит в себе немало интересного и загадочного.

Центральное место треугольника занимают так называемые замечательные точки.

Думаю, что в конце урока вы сможете сказать: почему точки называются замечательными и являются ли они такими.

Какова тема нашего урока? «Четыре замечательные точки треугольника». Эпиграфом к уроку могут служить слова К. Вейерштрасса: «Математик, который не является отчасти поэтом, никогда не достигнет совершенства в математике» (эпиграф написан на доске).

Посмотрите на формулировку темы урока, на эпиграф и попробуйте определить цели вашей работы на уроке. В конце урока мы проверим, насколько вы их выполнили.

3. Самостоятельная работа обучающихся.

Подготовка к самостоятельной работе

Для работы на уроке вы должны выбрать себе одну из шести групп: «Теоретики», «Творчество», «Логики-конструкторы», «Практики», «Историки», «Эксперты».

Инструктаж

Каждая группа получает карточки с заданиями. Если задание непонятно, учитель дополнительно делает пояснения.

«Теоретики»

Задание: дайте определение основным понятиям, необходимым при изучении темы «Четыре замечательные точки треугольника» (высота треугольника, медиана треугольника, биссектриса треугольника, серединный перпендикуляр, вписанная окружность, описанная окружность), можно воспользоваться учебником; напишите основные понятия на листе бумаги.

«Историки»

биссектрисы центре вписанного круга перпендикуляры центре описанного круга . В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром медиан центром тяжести

В 20-х годах XIX в. французские математики Ж. Понселе, Ш. Брианшон и другие установили независимо друг от друга следующую теорему: основания медиан, основания высот и середин отрезков высот, соединяющих ортоцентр с вершинами треугольника, лежат на одной и той же окружности.

Эта окружность называется «окружностью девяти точек», или «окружностью Фейербаха», или «окружностью Эйлера». К. Фейербах установил, что центр этой окружности лежит на «прямой Эйлера».

Задание: проанализируйте статью и заполните таблицу, отражающую изученный материал.

Название точки

Что пересекается

«Творчество»

Задание: придумать синквэйн(ы) по теме «Четыре замечательные точки треугольника» (например, треугольник, точка, медиана и др.)

Правило написания синквэйна:

В первой строчке тема называется одним словом (обычно существительным).

Вторая строчка – это описание темы в двух словах (2 прилагательных).

Третья строчка – это описание действия в рамках этой темы тремя словами (глаголы, деепричастия).

Четвёртая строчка – это фраза из 4 слов, показывающая отношение к теме.

Проследняя строчка – это синоним (метафора) из одного слова, который повторяет суть темы.

«Логики-конструкторы»

Медианой треугольника называется отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Любой треугольник имеет три медианы.

Биссектрисой называется отрезок биссектрисы любого угла от вершины до пересечения с противоположной стороной. Любой треугольник имеет три биссектрисы.

Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону или на её продолжение. Любой треугольник имеет три высоты.

Серединный перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярно к нему. Любой треугольник имеет три серединных перпендикуляра.

Задание: Используя треугольные листы бумаги, построить сгибанием точки пересечения медиан, высот, биссектрис, серединных перпендикуляров. Объяснить это всему классу.

«Практики»

В четвёртой книге «Начал» Евклид решает задачу «Вписать круг в данный треугольник». Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга . Из решения другой задачи Евклида вытекает, что перпендикуляры , восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга . В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово «ортос» означает прямой, правильный). Это предложение было, однако, известно Архимеду, Паппу, Проклу. Четвёртой особенной точкой треугольника является точка пересечения медиан . Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, начиная с XVIII в. Они были названы «замечательными» или «особенными точками треугольника».

Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – «геометрии треугольника», или «новой геометрии треугольника», одним из родоначальников которой был Леонард Эйлер.

Задание: проанализируйте предложенный материал и придумайте схему, отражающую смысловые связи между единицами, поясните её, нарисуйте на листе бумаги, оформите на доске.

Замечательные точки треугольника

1.____________ 2.___________ 3.______________ 4.____________

Чертёж 1 Чертёж 2 Чертёж 3 Чертёж 4

____________ ___________ ______________ ____________

(пояснение)

«Эксперты»

Задание: составьте таблицу, в которой вы оцените работу каждой группы, выберите параметры, по которым вы будете оценивать работу групп, определите баллы.

Параметры могут быть такими: участие каждого обучающегося в работе своей группы, участие в защите, интересное изложение материала, представлена наглядность и т.д.

В своём выступлении вы должны отметить позитивные и негативные моменты в деятельности каждой группы.

4. Выступление групп. (по 2-3 минуты)

Результаты работы вывешиваются на доске

5. Подведение итогов урока.

Посмотрите на цели, сформулированные вами в начале урока. Всё ли удалось вам выполнить?

Согласны ли вы с эпиграфом, который был выбран к сегодняшнему уроку?

6. Задание на дом.

1) Добейтесь того, чтобы треугольник, который опирается на остриё иглы в определённой точке, находился в равновесии, используя материал сегодняшнего урока.

2) Начертите в различных треугольниках все 4 замечательные точки.

Введение

Предметы окружающего нас мира обладают определенными свойствами, изучением которых занимаются различные науки.

Геометрия - это раздел математики, который рассматривает различные фигуры и их свойства, своими корнями уходит в далёкое прошлое.

В четвертой книге «Начал» Евклид решает задачу: «Вписать круг в данный треугольник». Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке - центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке - центре описанного круга. В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово «ортос» означает «прямой», «правильный»). Это предложение было, однако, известно Архимеду. Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника.

На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы «замечательными» или «особенными» точками треугольника. Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – «геометрии треугольника» или «новой геометрии треугольника», одним из родоначальников которой стал Леонард Эйлер.

В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже «прямой Эйлера». В двадцатых годах XIX века французские математики Ж. Понселе, Ш. Брианшон и другие установили независимо друг от друга следующую теорему: основания медиан, основания высот и середины отрезков высот, соединяющих ортоцентр с вершинами треугольника, лежат на одной и той же окружности. Эта окружность называется «окружностью девяти точек», или «окружностью Фейербаха», или «окружностью Эйлера». К. Фейербах установил, что центр этой окружности лежит на прямой Эйлера.

«Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг - геометрия». Эти слова, сказанные великим французским архитектором Ле Корбюзье в начале XX века, очень точно характеризуют и наше время. Мир, в котором мы живем, наполнен геометрией домов и улиц, гор и полей, творениями природы и человека.

Нас заинтересовали так называемые «замечательные точки треугольника».

После прочтения литературы по данной теме, мы зафиксировали для себя определения и свойства замечательных точек треугольника. Но на этом наша работа не закончилась, и нам захотелось самим исследовать эти точки.

Поэтому цель данной работы – изучение некоторых замечательных точек и линий треугольника, применение полученных знаний к решению задач. В процессе достижения поставленной цели можно выделить следующие этапы:

    Подбор и изучение учебного материала из различных источников информации, литературы;

    Изучение основных свойств замечательных точек и линий треугольника;

    Обобщение этих свойств и доказательство необходимых теорем;

    Решение задач, связанных с замечательными точками треугольника.

Глава I . Замечательные точки и линии треугольника

1.1 Точка пересечения серединных перпендикуляров к сторонам треугольника

Серединный перпендикуляр – это прямая, проходящая через середину отрезка, перпендикулярно к нему. Нам уже известна теорема, характеризующая свойство серединного перпендикуляра: каждая точка серединного перпендикуляра к отрезку равноудалена от его концов и обратно, если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре.

Многоугольник называется вписанным в окружность, если все его вершины принадлежат окружности. Окружность при этом называется описанной около многоугольника.

Около всякого треугольника можно описать окружность. Ее центром является точкой пересечения серединных перпендикуляров к сторонам треугольника.

Пусть точка О – точка пересечения серединных перпендикуляров к сторонам треугольника АВ и ВС.

Вывод: таким образом, если точка О- точка пересечения серединных перпендикуляров к сторонам треугольника, то ОА=ОС=ОВ, т.е. точка О равноудалена от всех вершин треугольника АВС, значит, она является центром описанной окружности.

остроугольный

тупоугольный

прямоугольный

Следствия

sin γ = c/2R = с/sin γ =2R.

Аналогично доказывается а / sin α =2R, b/ sin β =2R.

Таким образом:

Это свойство называют теоремой синусов.

В математике часто бывает, что объекты, определенные совсем по- разному, оказываются совпадающими.

Пример. Пусть А1, В1, С1 – середины сторон ∆АВС ВС, АС, АВ соответственно. Показать, что окружности, описанные около треугольников АВ1С1, А1В1С, А1ВС1 пересекаются в одной точке. Причем эта точка центр описанной около ∆АВС окружности.

    Рассмотрим отрезок АО и построим на этом отрезке, как на диаметре, окружность. На эту окружность попадают точки С1и В1, т.к. являются вершинами прямых углов, опирающихся на АО. Точки А, С1, В1 лежат на окружности =эта окружность описана около ∆АВ1С1.

    Аналогично проведем отрезок ВО и построим на этом отрезке, как на диаметре, окружность. Это будет окружность, описанная около ∆ВС1 А1.

    Проведем отрезок СО и построим на этом отрезке, как на диаметре, окружность. Это будет окружность, описанная около

    Эти три окружности проходят через точку О - центр описанной около ∆АВС окружности.

Обобщение. Если на сторонах∆АВС АС, ВС, АС взять произвольные точки А 1 , В 1 , С 1 , то окружности описанные около треугольников АВ 1 С 1 , А 1 В 1 С, А 1 ВС 1 пересекаются в одной точке.

1.2 Точка пересечения биссектрис треугольника

Верно и обратное утверждение: если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Полезно отметить половины одного угла одинаковыми буквами:

OAF=OAD= α, OBD=OBE= β, OCE=OCF= γ.

Пусть точка О- точка пересечения биссектрис углов А и В. По свойству точки, лежащей на биссектрисе угла А, OF=OD=r. По свойству точки, лежащей на биссектрисе угла В, OЕ=OD=r. Таким образом, OЕ=OD= OF=r= точка О равноудалена от всех сторон треугольника АВС, т.е. О- центр вписанной окружности. (Точка О – единственная).

Вывод: таким образом, если точка О- точка пересечения биссектрис углов треугольника, то OЕ=OD= OF=r, т.е. точка О равноудалена от всех сторон треугольника АВС, значит, она является центром вписанной окружности. Точка О- пересечения биссектрис углов треугольника – замечательная точка треугольника.

Следствия:

Из равенства треугольников АОF и AOD (рисунок 1) по гипотенузе и острому углу, следует, что AF = AD . Из равенства треугольников OBD и OBE следует, что BD = BE , Из равенства треугольников COE и COF следует, что С F = CE . Таким образом, отрезки касательных, проведенных к окружности из одной точки равны.

AF=AD=z , BD=BE=y , СF=CE=x

а=х+у (1), b = х+ z (2), с= х+у (3).

    + (2) – (3), то получим: а+ b -с= x + y + x + z - z - y = а+ b -с= 2 x =

х= ( b + c - а)/2

Аналогично: (1) +(3) – (2), то получим: у = (а + с – b )/2.

Аналогично: (2) +(3) – (1), то получим: z = (а + b - c )/2.

Биссектриса угла треугольника разбивает противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.

1.3 Точка пересечения медиан треугольника (центроид)

Доказательство 1. Пусть A 1 , B 1 и C 1 -середины сторон BC, CA и AB треугольника ABC соответственно (рис.4).

Пусть G-точка пересечения двух медиан AA 1 и BB 1 . Докажем сначала, что AG:GA 1 = BG:GB 1 = 2.

Для этого возьмем середины P и Q отрезков AG и BG. По теореме о средней линии треугольника отрезки B 1 A 1 и PQ равны половине стороны AB и параллельны ей. Поэтому четырехугольник A 1 B 1 PQ-параллелограмм. Тогда точка G пересечения его диагоналей PA 1 и QB 1 делит каждую из них пополам. Следовательно, точки P и G делят медиану AA 1 на три равные части, а точки Q и G делят медиану BB 1 также на три равные части. Итак, точка G пересечения двух медиан треугольника делит каждую из них в отношении 2:1, считая от вершины.

Точку пересечения медиан треугольника называют центроидом или центром тяжести треугольника. Это название связано с тем, что именно в этой точке находиться центр тяжести однородной треугольной пластины.

1.4 Точка пересечения высот треугольника (ортоцентр)

1.5 Точка Торричелли

Путь дан треугольник ABC. Точкой Торричелли этого треугольника называется такая точка O, из которой стороны данного треугольника видны под углом 120°, т.е. углы AOB, AOC и BOC равны 120°.

Докажем, что в случае, если все углы треугольника меньше 120°, то точка Торричелли существует.

На стороне AB треугольника ABC построим равносторонний треугольник ABC" (рис. 6, а), и опишем около него окружность. Отрезок AB стягивает дугу этой окружности величиной 120°. Следовательно, точки этой дуги, отличные от A и B, обладают тем свойством, что отрезок AB виден из них под углом 120°. Аналогичным образом, на стороне AC треугольника ABC построим равносторонний треугольник ACB" (рис. 6, а), и опишем около него окружность. Точки соответствующей дуги, отличные A и C, обладают тем свойством, что отрезок AC виден из них под углом 120°. В случае, когда углы треугольника меньше 120°, эти дуги пересекаются в некоторой внутренней точке O. В этом случае ∟AOB = 120°, ∟AOC = 120°. Следовательно, и ∟BOC = 120°. Поэтому точка O является искомой.

В случае, когда один из углов треугольника, например ABC, равен 120°, точкой пересечения дуг окружностей будет точка B (рис. 6, б). В этом случае точки Торричелли не существует, так как нельзя говорить об углах, под которыми видны из этой точки стороны AB и BC.

В случае, когда один из углов треугольника, например ABC, больше 120° (рис. 6, в), соответствующие дуги окружностей не пересекаются, и точки Торричелли также не существует.

С точкой Торричелли связана задача Ферма (которую мы рассмотрим во главе II) нахождении точки, сумма расстояний от которой до трех данных точек наименьшая.

1.6 Окружность девяти точек

Действительно, A 3 B 2 – средняя линия треугольника AHC и, следовательно, A 3 B 2 || CC 1 . B 2 A 2 – средняя линия треугольника ABC и, следовательно, B 2 A 2 || AB. Так как CC 1 ┴ AB, то A 3 B 2 A 2 = 90°. Аналогично, A 3 C 2 A 2 = 90°. Поэтому точки A 2 , B 2 , C 2 , A 3 лежат на одной окружности с диаметром A 2 A 3 . Так как AA 1 ┴BC, то точка A 1 также принадлежит этой окружности. Таким образом, точки A 1 и A 3 лежат на окружности, описанной около треугольника A2B2C2. Аналогичным образом показывается, что точки B 1 и B 3 , C 1 и C 3 лежат на этой окружности. Значит, все девять точек лежат на одной окружности.

При этом центр окружности девяти точек лежит посередине между центром пересечения высот и центром описанной окружности. Действительно, пусть в треугольнике ABC (рис. 9), точка O – центр описанной окружности; G – точка пересечения медиан. H точка пересечения высот. Требуется доказать, что точки O, G, H лежат на одной прямой и центр окружности девяти точек N делит отрезок OH пополам.

Рассмотрим гомотетию с центром в точке G и коэффициентом -0,5. Вершины A, B, C треугольника ABC перейдут, соответственно в точки A 2 , B 2 , C 2 . Высоты треугольника ABC перейдут в высоты треугольника A 2 B 2 C 2 и, следовательно, точка H перейдет в точку O. Поэтому точки O, G, H будут лежать на одной прямой.

Покажем, что середина N отрезка OH является центром окружности девяти точек. Действительно, C 1 C 2 – хорда окружности девяти точек. Поэтому серединный перпендикуляр к этой хорде является диаметром и пересекает OH в середине N. Аналогично, серединный перпендикуляр к хорде B 1 B 2 является диаметром и пересекает OH в той же точке N. Значит N – центр окружности девяти точек. Что и требовалось доказать.

Действительно, пусть P – произвольная точка, лежащая на окружности, описанной около треугольника ABC; D, E, F – основания перпендикуляров, опущенных из точки P на стороны треугольника (рис. 10). Покажем, что точки D, E, F лежат на одной прямой.

Заметим, что в случае, если AP проходит через центр окружности, то точки D и E совпадают с вершинами B и C. В противном случае, один из углов ABP или ACP острый, а другой – тупой. Из этого следует, что точки D и E будут расположены по разные стороны от прямой BC и для того, чтобы доказать, что точки D, E и F лежат на одной прямой, достаточно проверить, что ∟CEF =∟BED.

Опишем окружность с диаметром CP. Так как ∟CFP = ∟CEP = 90°, то точки E и F лежат на этой окружности. Поэтому ∟CEF =∟CPF как вписанные углы, опирающиеся на одну дугу окружности. Далее, ∟CPF = 90°- ∟PCF = 90°- ∟DBP = ∟BPD. Опишем окружность с диаметром BP. Так как ∟BEP = ∟BDP = 90°, то точки F и D лежат на этой окружности. Поэтому ∟BPD =∟BED. Следовательно, окончательно получаем, что ∟CEF =∟BED. Значит точки D, E, F лежат на одной прямой.

Глава II Решение задач

Начнем с задач, относящихся к расположению биссектрис, медиан и высот треугольника. Их решение, с одной стороны, позволяет вспомнить пройденный ранее материал, а с другой стороны, развивает необходимые геометрические представления, подготавливает к решению более сложных задач.

Задача 1. По углам A и B треугольника ABC (∟A

Решение. Пусть CD – высота, CE – биссектриса, тогда

∟BCD = 90° - ∟B, ∟BCE = (180° - ∟A - ∟B):2.

Следовательно, ∟DCE =.

Решение. Пусть O – точка пересечения биссектрис треугольника ABC (рис. 1). Воспользуемся тем, что против большей стороны треугольника лежит больший угол. Если AB BC, то ∟A

Решение. Пусть O – точка пересечения высот треугольника ABC (рис. 2). Если AC ∟B. Окружность с диаметром BC пройдет через точки F и G. Учитывая, что из двух хорд меньше та, на которую опирается меньший вписанный угол, получаем, что CG

Доказательство. На сторонах AC и BC треугольника ABC, как на диаметрах, построим окружности. Точки A 1 , B 1 , C 1 принадлежат этим окружностям. Поэтому ∟B 1 C 1 C = ∟B 1 BC, как углы, опирающиеся на одну и ту же дугу окружности. ∟B 1 BC = ∟CAA 1 , как углы с взаимно перпендикулярными сторонами. ∟CAA 1 = ∟CC 1 A 1 , как углы, опирающиеся на одну и ту же дугу окружности. Следовательно, ∟B 1 C 1 C = ∟CC 1 A 1 , т.е. CC 1 является биссектрисой угла B 1 C 1 A 1 . Аналогичным образом показывается, что AA 1 и BB 1 являются биссектрисами углов B 1 A 1 C 1 и A 1 B 1 C 1 .

Рассмотренный треугольник, вершинами которого являются основания высот данного остроугольного треугольника, дает ответ на одну из классических экстремальных задач.

Решение. Пусть ABC – данный остроугольный треугольник. На его сторонах требуется найти такие точки A 1 , B 1 , C 1 , для которых периметр треугольника A 1 B 1 C 1 был бы наименьшим (рис. 4).

Зафиксируем сначала точку C 1 и будем искать точки A 1 и B 1 , для которых периметр треугольника A 1 B 1 C 1 наименьший (при данном положении точки C 1).

Для этого рассмотрим точки D и E симметричные точке C 1 относительно прямых AC и BC. Тогда B 1 C 1 = B 1 D, A 1 C 1 = A 1 E и, следовательно, периметр треугольника A 1 B 1 C 1 будет равен длине ломаной DB 1 A 1 E. Ясно, что длина этой ломаной наименьшая, если точки B 1 , A 1 лежат на прямой DE.

Будем теперь менять положение точки C 1 , и искать такое положение, при котором периметр соответствующего треугольника A 1 B 1 C 1 наименьший.

Так как точка D симметрична C 1 относительно AC, то CD = CC 1 и ACD=ACC 1 . Аналогично, CE=CC 1 и BCE=BCC 1 . Следовательно, треугольник CDE равнобедренный. Его боковая сторона равна CC 1 . Основание DE равно периметру P треугольника A 1 B 1 C 1 . Угол DCE равен удвоенному углу ACB треугольника ABC и, значит, не зависит от положения точки C 1 .

В равнобедренном треугольнике с данным углом при вершине основание тем меньше, чем меньше боковая сторона. Поэтому наименьшее значение периметра P достигается в случае наименьшего значения CC 1 . Это значение принимается в случае, если CC 1 является высотой треугольника ABC. Таким образом, искомой точкой C 1 на стороне AB является основание высоты, проведенной из вершины C.

Заметим, что мы могли бы фиксировать сначала не точку C 1 , а точку A 1 или точку B 1 и получили бы, что A 1 и B 1 являются основаниями соответствующих высот треугольника ABC.

Из этого следует, что искомым треугольником, наименьшего периметра, вписанным в данный остроугольный треугольник ABC является треугольник, вершинами которого служат основания высот треугольника ABC.

Решение. Докажем, что в случае, если углы треугольника меньше 120°, то искомой точкой в задаче Штейнера является точка Торричелли.

Повернем треугольник ABC вокруг вершины C на угол 60°, рис. 7. Получим треугольник A’B’C. Возьмем произвольную точку O в треугольнике ABC . При повороте она перейдет в какую-то точку O’. Треугольник OO’C равносторонний, так как CO = CO’ и ∟OCO’ = 60°, следовательно, OC = OO’. Поэтому сумма длин OA + OB + OC будет равна длине ломаной AO + OO’ + O’B’. Ясно, что наименьшее значение длина этой ломаной принимает в случае, если точки A, O, O’, B’ лежат на одной прямой. Если O – точка Торричелли, то это так. Действительно, ∟AOC = 120°, ∟COO" = 60°. Следовательно, точки A, O, O’ лежат на одной прямой. Аналогично, ∟CO’O = 60°, ∟CO"B" = 120°. Следовательно, точки O, O’, B’ лежат на одной прямой. Значит, все точки A, O, O’, B’ лежат на одной прямой.

Заключение

Геометрия треугольника, наравне с другими разделами элементарной математики, дает возможность почувствовать красоту математики вообще и может стать для кого-то началом пути в «большую науку».

Геометрия - удивительная наука. Ее история насчитывает не одно тысячелетие, но каждая встреча с ней способна одарить и обогатить (как ученика, так и учителя) волнующей новизной маленького открытия, изумляющей радостью творчества. Действительно, любая задача элементарной геометрии является, по существу, теоремой, а ее решение – скромной (а иногда и огромной) математической победой.

Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Школьная геометрия только тогда может стать интересной и содержательной, только тогда может стать собственно геометрией, когда в ней появляется глубокое и всестороннее изучение треугольника. Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения - никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника.

В данной работе были рассмотрены свойства биссектрис, медиан, серединных перпендикуляров и высот треугольника, расширено число замечательных точек и линий треугольника, сформулированы и доказаны теоремы. Решен ряд задач на применение этих теорем.

Представленный материал может быть использован как на основных уроках, так и на факультативных занятиях, также при подготовке к централизованному тестированию и олимпиадам по математике.

Список литературы

    Берже М. Геометрия в двух томах – М: Мир, 1984.

    Киселёв А. П. Элементарная геометрия. – М.: Просвещение, 1980.

    Коксетер Г.С., Грейтцер С.Л. Новые встречи с геометрией. – М.: Наука, 1978.

    Латотин Л.А., Чеботаравский Б.Д. Математика 9. – Минск: Народная асвета, 2014.

    Прасолов В.В. Задачи по планиметрии. – М.: Наука, 1986. – Ч. 1.

    Сканави М. И. Математика. Задачи с решениями. – Ростов-на-Дону: Феникс, 1998.

    Шарыгин И.Ф. Задачи по геометрии: Планиметрия. – М.: Наука, 1986.

    На данном уроке мы рассмотрим четыре замечательные точки треугольника. На двух из них остановимся подробно, вспомним доказательства важных теорем и решим задачу. Остальные две вспомним и охарактеризуем.

    Тема: Повторение курса геометрии 8 класса

    Урок: Четыре замечательные точки треугольника

    Треугольник - это, прежде всего, три отрезка и три угла, поэтому свойства отрезков и углов являются основополагающими.

    Задан отрезок АВ. У любого отрезка есть середина, и через нее можно провести перпендикуляр - обозначим его за р. Таким образом, р - серединный перпендикуляр.

    Теорема (основное свойство серединного перпендикуляра)

    Любая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка.

    Доказать, что

    Доказательство:

    Рассмотрим треугольники и (см. Рис. 1). Они прямоугольные и равные, т.к. имеют общий катет ОМ, а катеты АО и ОВ равны по условию, таким образом, имеем два прямоугольных треугольника, равных по двум катетам. Отсюда следует, что гипотенузы треугольников тоже равны, то есть , что и требовалось доказать.

    Рис. 1

    Справедлива обратная теорема.

    Теорема

    Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

    Задан отрезок АВ, серединный перпендикуляр к нему р, точка М, равноудаленная от концов отрезка (см. Рис. 2).

    Доказать, что точка М лежит на серединном перпендикуляре к отрезку.

    Рис. 2

    Доказательство:

    Рассмотрим треугольник . Он равнобедренный, так как по условию. Рассмотрим медиану треугольника: точка О - середина основания АВ, ОМ - медиана. Согласно свойству равнобедренного треугольника, медиана, проведенная к его основанию, является одновременно высотой и биссектрисой. Отсюда следует, что . Но прямая р также перпендикулярна АВ. Мы знаем, что в точку О можно провести единственный перпендикуляр к отрезку АВ, значит, прямые ОМ и р совпадают, отсюда следует, что точка М принадлежит прямой р, что и требовалось доказать.

    Если необходимо описать окружность около одного отрезка, это можно сделать, и таких окружностей бесконечно много, но центр каждой из них будет лежать на серединном перпендикуляре к отрезку.

    Говорят, что серединный перпендикуляр есть геометрическое место точек, равноудаленных от концов отрезка.

    Треугольник состоит из трех отрезков. Проведем к двум из них серединные перпендикуляры и получим точку О их пересечения (см. Рис. 3).

    Точка О принадлежит серединному перпендикуляру к стороне ВС треугольника, значит, она равноудалена от его вершин В и С, обозначим это расстояние за R: .

    Кроме того, точка О находится на серединном перпендикуляре к отрезку АВ, т.е. , вместе с тем , отсюда .

    Таким образом, точка О пересечения двух серединных

    Рис. 3

    перпендикуляров треугольника равноудалена от его вершин, а значит, она лежит и на третьем серединном перпендикуляре.

    Мы повторили доказательство важной теоремы.

    Три серединных перпендикуляра треугольника пересекаются в одной точке - центре описанной окружности.

    Итак, мы рассмотрели первую замечательную точку треугольника - точку пересечения его серединных перпендикуляров.

    Перейдем к свойству произвольного угла (см. Рис. 4).

    Задан угол , его биссектриса AL, точка М лежит на биссектрисе.

    Рис. 4

    Если точка М лежит на биссектрисе угла, то она равноудалена от сторон угла, то есть расстояния от точки М до АС и до ВС сторон угла равны.

    Доказательство:

    Рассмотрим треугольники и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, а углы и равны, так как AL - биссектриса угла . Таким образом, прямоугольные треугольники равны по гипотенузе и острому углу, отсюда следует, что , что и требовалось доказать. Таким образом, точка на биссектрисе угла равноудалена от сторон этого угла.

    Справедлива обратная теорема.

    Теорема

    Если точка равноудалена от сторон неразвернутого угла, то она лежит на его биссектрисе (см. Рис. 5).

    Задан неразвернутый угол , точка М, такая, что расстояние от нее до сторон угла одинаковое.

    Доказать, что точка М лежит на биссектрисе угла.

    Рис. 5

    Доказательство:

    Расстояние от точки до прямой есть длина перпендикуляра. Проведем из точки М перпендикуляры МК к стороне АВ и МР к стороне АС.

    Рассмотрим треугольники и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, катеты МК и МР равны по условию. Таким образом, прямоугольные треугольники равны по гипотенузе и катету. Из равенства треугольников следует равенство соответствующих элементов, против равных катетов лежат равные углы, таким образом, , следовательно, точка М лежит на биссектрисе данного угла.

    Если необходимо вписать в угол окружность, это можно сделать, и таких окружностей бесконечно много, но их центры лежат на биссектрисе данного угла.

    Говорят, что биссектриса есть геометрическое место точек, равноудаленных от сторон угла.

    Треугольник состоит из трех углов. Построим биссектрисы двух из них, получим точку О их пересечения (см. Рис. 6).

    Точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон АВ и ВС, обозначим расстояние за r: . Также точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон АС и ВС: , , отсюда .

    Несложно заметить, что точка пересечения биссектрис равноудалена от сторон третьего угла, а значит, она лежит на

    Рис. 6

    биссектрисе угла . Таким образом, все три биссектрисы треугольника пересекаются в одной точке.

    Итак, мы вспомнили доказательство еще одной важной теоремы.

    Биссектрисы углов треугольника пересекаются в одной точке - центре вписанной окружности.

    Итак, мы рассмотрели вторую замечательную точку треугольника - точку пересечения биссектрис.

    Мы рассмотрели биссектрису угла и отметили ее важные свойства: точки биссектрисы равноудалены от сторон угла, кроме того, отрезки касательных, проведенных к окружности из одной точки, равны.

    Введем некоторые обозначения (см. Рис. 7).

    Обозначим равные отрезки касательных через х, у и z. Сторона ВС, лежащая против вершины А, обозначается как а, аналогично АС как b, АВ как с.

    Рис. 7

    Задача 1: в треугольнике известны полупериметр и длина стороны а. Найти длину касательной, проведенной из вершины А - АК, обозначенную за х.

    Очевидно, что треугольник задан не полностью, и таких треугольников много, но, оказывается, некоторые элементы у них общие.

    Для задач, в которых речь идет о вписанной окружности, можно предложить следующую методику решения:

    1. Провести биссектрисы и получить центр вписанной окружности.

    2. Из центра О провести перпендикуляры к сторонам и получить точки касания.

    3. Отметить равные касательные.

    4. Выписать связь между сторонами треугольника и касательными.

    В треугольнике есть так называемые четыре замечательные точки: точка пересечения медиан. Точка пересечения биссектрис, точка пересечения высот и точка пересечения серединных перпендикуляров. Рассмотрим каждую из них.

    Точка пересечения медиан треугольника

    Теорема 1

    О пересечении медиан треуголника : Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

    Доказательство.

    Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).

    Рисунок 1. Медианы треугольника

    По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $\angle ABB_1=\angle BB_1A_1,\ \angle BAA_1=\angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

    Аналогично доказывается, что

    Теорема доказана.

    Точка пересечения биссектрис треугольника

    Теорема 2

    О пересечении биссектрис треугольника : Биссектрисы треугольника пересекаются в одной точке.

    Доказательство.

    Рассмотрим треугольник $ABC$, где $AM,\ BP,\ CK$ его биссектрисы. Пусть точка $O$ - точка пересечения биссектрис $AM\ и\ BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).

    Рисунок 2. Биссектрисы треугольника

    Теорема 3

    Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

    По теореме 3, имеем: $OX=OZ,\ OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.

    Теорема доказана.

    Точка пересечения серединных перпендикуляров треугольника

    Теорема 4

    Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

    Доказательство.

    Пусть дан треугольник $ABC$, $n,\ m,\ p$ его серединные перпендикуляры. Пусть точка $O$ - точка пересечения серединных перпендикуляров $n\ и\ m$ (рис. 3).

    Рисунок 3. Серединные перпендикуляры треугольника

    Для доказательства нам потребуется следующая теорема.

    Теорема 5

    Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.

    По теореме 3, имеем: $OB=OC,\ OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.

    Теорема доказана.

    Точка пересечения высот треугольника

    Теорема 6

    Высоты треугольника или их продолжения пересекаются в одной точке.

    Доказательство.

    Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).

    Рисунок 4. Высоты треугольника

    Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ -- середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ -- середина стороны $C_2A_2$, а точка $C$ -- середина стороны $A_2B_2$. Из построения мы имеем, что ${CC}_1\bot A_2B_2,\ {BB}_1\bot A_2C_2,\ {AA}_1\bot C_2B_2$. Следовательно, ${AA}_1,\ {BB}_1,\ {CC}_1$ -- серединные перпендикуляры треугольника $A_2B_2C_2$. Тогда, по теореме 4, имеем, что высоты ${AA}_1,\ {BB}_1,\ {CC}_1$ пересекаются в одной точке.