Резисторы полупроводниковые диоды транзисторы. Полупроводниковые диоды и транзисторы, область применения

Полупроводниковым диодом называется не усиливающий сигнала электронный элемент с одним электронно-дырочным переходом и двумя выводами от анодаи катода.

Диоды применяются в электронных схемах для преобразования параметров электрических сигналов (выпрямление, стабилизация). Диоды различаются по конструктивному исполнению (точечные, плоскостные ) и по условному обозначению на схемах (в зависимости от функционального назначения).

Принцип действия диода иллюстрирует еговольтамперная характеристика, т.е. зависимость тока от приложенного напряжения, (Рис.1), из которой видно, что диод обладаетодносторонней проводимостью (пропускает ток в прямом и практически не пропускает в обратном направлении).

Диод подключен в прямом направлении, когда к аноду А подключен положительный, а к катоду К – отрицательный полюс источника тока. Этому соответствует ветвь характеристики в первом квадранте. Через диод проходит большой прямой токI ПР.

При подключении в обратном направлении (плюс – к катоду, минус – к аноду) обратный токI ОБР, проходящий через диод, очень мал (mkA).

При этом прямой ток, как видно из рис. 1, существенно зависит от температуры окружающей среды (увеличивается с повышением температуры).

Рис. 1. Вольтамперная характеристика диода.

Характеристики диода:

Помимо рассмотренной вольтамперной к основным характеристикам диода относятся:

    Максимальный прямой ток I ПР ;

    Температурная стойкость t 0 max ;

    Максимальное обратное напряжение U KP .

    Сопротивление постоянному току R 0 = U ПР / I ПР ;

    Сопротивление переменному току R i = Δ U ПР / Δ I ПР ;

    Крутизна вольтамперной характеристики S = Δ I ПР / Δ U ПР ;

    Мощность потерь на аноде P A = U ПР I ПР ;

Область использования диодов : выпрямление переменного тока; стабилизация напряжения; работа в фотоэлектрических устройствах; работа в схемах СВЧ и др.

Транзисторы

Транзисторы – полупроводниковые приборы с двумяр-п переходами, позволяющиеусилить электрический сигнал и имеющие обычно три вывода. Делятся на две группы –биполярные и униполярные (полевые). Основные схемы включения биполярного транзистора –с общей базой, с общим эмиттером и с общим коллектором . От вида схемы включения зависит, по какому параметру транзистор усиливает сигнал (по напряжению, току и пр.).

Биполярным транзистором называется полупроводниковый прибор трехслойной структуры с чередующимися типами проводимости и двумяр-п переходами, позволяющий усиливать электрические сигналы и имеющий три вывода. Различаютпрямые (р-n-р) и обратные (n-р-n) транзисторы, разница между которыми состоит вполярности подключения источников питания.

Составные части транзистора соответствуют его слоям и носят названия: эмиттер – излучатель зарядов,база – основание иколлектор – собиратель зарядов. Слои обладают

различной проводимостью: крайние (эмиттер и коллектор) - дырочной p , а находящаяся между ними база -электронной n (рис. 2).

Эмиттер База Коллектор

I э I к

Вход Выход

Рис. 2. Биполярный p - n - p транзистор, включенный по схеме с общей базой

Рассмотрим принцип действия транзистора. Как видно на рис. 2, транзистор имеет два перехода: p - n иn - p . Первый переход (p - n ) включен впрямом направлении, т.е. минус кn -области, а плюс кр – области - эмиттеру. Поэтому через этот переход будет проходить прямой ток. Второй переход (n - p ) включен вобратном направлении, т.е. плюс к базе (n - область), а минус кр – области - коллектору. Если разомкнуть эмиттерную (входную) цепь, этот переход, находящийся подобратным U K включением, будет практически закрыт.

Если замкнуть цепь эмиттера (подать входной сигнал), через первый (открытый) p - n переход потечет прямой ток, образованный инжекцией дырок в базу. Поскольку толщина базы невелика, а полупроводники, из которых изготовлены эмиттер и база, подобраны с различной концентрацией основных носителей, т.е.концентрация дырок в эмиттере значительно выше концентрации электронов в базе , дырок, попавших в базу окажется так много, что только малая часть из них найдет в базе необходимые для рекомбинации электроны. Поэтому пришедшие дырки, не рекомбинировавшие с электронами, начинают перемещаться в те области базы, которые прилегают к коллектору. Положительные дырки, подошедшие к коллекторному переходу, испы­тывая действие сильного ускоряющего поля от мощной коллекторной батареиU K , переходят в кол­лектор и рекомбинируют с электронами, приходящими в кол­лектор из отрицательного полюса батареи питания. В резуль­тате через коллекторный переход начнет проходить коллекторный токI K , несмотря на то, что к переходу приложено обратное напряжение. Этот коллекторный ток будет составлять 90 – 95% от эмиттерного (из-за небольшого количества рекомбинировавщих и оставшихся в базе дырок). Но самое главное - это то, что величина коллекторного тока будет зависеть от величины тока эмиттера и изменяться пропорционально его изменению. Действительно, чем больше ток через эмиттерный переход, т. е. чем больше дырок впрыскивает эмиттер в базу, тем больше ток коллектора, кото­рый зависит от количества этих дырок. Отсюда следует практически важный вывод:

Управляя эмиттерным током транзистора, можно тем самым управлять и коллектор­ным током, причем при этом имеет место эффект усиления.

Данное свойство определило область использования транзисторов в схемах усилителей. Так, например, рассмотренная схема включения транзистора с общей базой будет давать усиление по напряжению и мощности подводимого сигнала, поскольку выходное сопротивление нагрузкиR н при соответствующем подборе напряжения батареиU к может быть существенно больше сопротивления на входе усилителя, т.е.R H >> R ВХ , а входной (эмиттерныйI Э ) и выходной (коллекторныйI К ) токи примерно равны. Отсюда напряжение и мощность, подводимые к входуU ВХ = I ВХ * R ВХ ; P вх = I 2 вх * R вх меньше соответствующих значений напряжения и мощности на выходе, т. е. в нагрузкеU = I К * R Н ; P н = I K 2 * R Н . Усиление по току при этом отсутствует (посколькуI Э ~ = I К ).

Чаще, однако, применяется другая схема включения транзистора - схема с общим эмиттером, при которой, кроме усиления мощ­ности, имеет место такжеусиление тока. Схема включенияс общим коллектором используется при работе на низкоомную нагрузку или от высокоомного датчика. Коэффи­циент усиления такой схемы по току и мощности составляет несколько де­сятков единиц, по напряжению - около единицы.

Для правильного понимания принципа работы схем на транзисторах необходимо хорошо представлять себе особенности работы транзистора как усилителя, заключающиеся в сле­дующем: в отличие от электронной лампы транзистор имеет в боль­шинстве схем включения невысокое входное сопротивление, вследствие чего считают, что транзистор управляется входным током, а не входным напряжением; малое входное сопротивление транзисторных усилителей при­водит к заметному потреблению мощности (тока) от источника усиливаемых колебаний, поэтому в этих усилителях основное значение имеет не усиление по напряжению, а усиление по току или мощности; коэффициент усиления по мощности k опреде­ляется отношением мощности, выделенной на выходе усилителя в полезной нагрузке, к мощности, затраченной на входном сопротивлении усилителя; параметры и характеристики транзистора сильно зависят от температуры и выбранного режима, что является недостатком.

Характеристики транзисторов:

    Входная, выходная и переходная характеристики, рис. 3,

Рис. 3. Характеристики транзистора: а – входная, б – выходная, в - переходная

    Коэффициент усиления (передачи) в общем виде, по напряжению, току, мощности

k=ΔΧ ВЫХ /ΔΧ ВХ;ΔU ВЫХ /ΔU ВХ;ΔI ВЫХ /ΔI ВХ;ΔP ВЫХ /ΔP ВХ.

    Входное сопротивление транзистора переменному току

R = ΔU ВХ / ΔI ВХ.

    Мощность потерь на коллекторе

P K = U K * I K .

Достоинства транзисторов: малые габариты, высокая чувствительность, безинерционность; долговечность;недостатки : существенное влияние внешних факторов (температуры, э/м полей, радиоактивных излучений и пр.).

Область использования транзисторов: Проводная и радиосвязь; телевидение; радиолокация; радионавигация; автоматика и телемеханика; вычислительная техника; измерительная техника; схемы усилителей; микросхемы памяти цифровых устройств и пр.

Полупроводниковые резисторы, диоды, транзисторы

ЛЕКЦИЯ 11

Свойства эмиссии (переход зарядов из одной области в другую).

Полупроводниковые резисторы − п/п приборы с двумя выводами, у которых R зависит от U , t ° C, освещённости, деформации и др.

1. Линейный резистор R = сonst, применяется в ИМС (слабо легированный кремний или арсенид галлия).

2. Варистор , R (U ) изготавливается из карбида кремния, смешанного с глиной.

ВАХ варистора

Коэффициент нелинейности λ = R/Rg = (U/I )/(dU/dI ) » const для различных типов. Применяют для защиты электрических цепей от перенапряжений.

3. Терморезистор

Характеристики термистора

1 − термистор, его R уменьшается с ростом t º

2 − позистор, его R увеличивается с ростом t º

Основной параметр − температурный коэффициент сопротивления: α = dRt *100/(dT·R ) это процентное изменение R при изменении Т на 1градус.

Для термистора α = − 0,3 ÷ 0,66.

Терморезисторы применяют в системах регулирования температуры, тепловой защиты, противопожарной сигнализации.

4. Фоторезистор

Сопротивление R зависит от освещенности. На подложку из керамики или стекла наносится пленка фотоактивного материала.

Используется внутренний фотоэффект. При освещенности происходит возбуждение электронов, переход их на более высокий энергетический уровень, изменяется концентрация свободных электронов.

Схема включения фоторезистора

Характеристики фоторезистора

При Ф = 0 I ф 0 − темновой ток. При наличии освещения I ф возрастает. Разность токов называется световым током или фототоком.

S = I ф/Ф − чувствительность; темновое сопротивление R T = 10 2 − 10 9 Ом. U раб = 100 В.

5. Тензорезистор , R зависит от деформации рабочего тела. Основная характеристика – деформационная характеристика – зависимость ∆R /R = f (∆l /l ), где l − длина рабочего тела.

Характеристики тензорезистора

Основные параметры R ном = 100 − 500 Ом; К = ∆R /R : ∆l /l (−150 ÷ + 150) − коэффициент тензочувствительности. Применяют для измерения деформации твердых тел.

1. Полупроводники: теория и свойства

2. Основные полупроводниковые приборы (Строение и применение)

3. Типы полупроводниковых приборов

4. Производство

5. Область применения

1.Полупроводники: теория и свойства

Сначала надо познакомиться с механизмом проводимости в полупроводниках. А для этого нужно понять природу связей удерживающих атомы полупроводникового кристалла друг возле друга. Для примера рассмотрим кристалл кремния.

Кремний-четырехвалентный элемент. Это означает, что во внешней

оболочке атома имеются четыре электрона, сравнительно слабо связанные

с ядром. Число ближайших соседей каждого атома кремния также равно

четырем. Взаимодействие пары соседних атомов осуществляется с помощью

паоноэлектронной связи, называемой ковалентной связью. В образовании

этой связи от каждого атома участвуют по одному валентному электрону, ко-

торые отщепляются от атомов (коллективизируются кристаллом) и при

своем движении большую часть времени проводят в пространстве между

соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга. Каждый атом образует четыре связи с соседними,

и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла.

Валентные электроны принадлежат всему кристаллу. Парноэлектронные связи кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкои температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны прочно привязаны к кристаллической решетке, и внешнее электрическое поле не оказывает заметного влияния на их движение.

Электронная проводимость.

При нагревании кремния кинетическая энергия частиц повышается, и

наступает разрыв отдельных связей. Некоторые электроны покидают свои орбиты и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, образуя электрический ток.

Проводимость полупроводников обусловленную наличием у металлов свободных

электронов электронов, называют электронной проводимостью. При повышении температуры число разорванных связей, а значит, и свободных электронов увеливается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10в17 до 10в24 1/м в3. Это приводит к уменьшению сопротивления.

Дырочная проводимость.

При разрыве связи образуется вакантное место с недостающим электроном.

Его называют дыркой. В дырке имеется избыточный положительный заряд по сравнению с остальными, нормальными связями. Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один

из электронов, обеспечивающих связь атомов, перескакивает на место об-

разовавшиеся дырки и восстанавливает здесь парноэлектронную связь.

а там, откуда перескочил этот электрон, образуется новая дырка. Таким

образом, дырка может перемещаться по всему кристаллу.

Если напряженность электрического поля в образце равна нулю то перемещение дырок, равноценное перемещению положительных зарядов, происходит беспорядочно и поэтому не создает электрического тока. При наличии электрического поля возникает упорядоченное перемещение дырок, и, таким образом, к электрическому току свободных электронов добавляется электрический ток связанный с перемещением дырок. Направление движения дырок противоположно направлению движения электронов.

Итак, в полупроводниках имеются носители заряда двух типов: электроны и дырки. Поэтому полупроводники обладают не только электронной, но и дырочной проводимостью. Проводимость при этих условиях называют собственной проводимостью полупроводников. Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов, например, в германии при комнатной температуре ne=3на10в23 см в –3. В то же время число атомов германия в 1 см кубическом порядка 10в23. Таким образом, число свободных электронов составляет примерно одну десятимиллиардную часть от общего числа атомов.

Существенная особенность полупроводников состоит в том, что в них

при наличии примесей наряду с собственной проводимостью возникает

дополнительная - примесная проводимость. Изменяя концентрацию

примеси, можно значительно изменять число носителей заряда того

или иного знака. Благодаря этому можно создавать полупроводники с

преимущественной концентрацией либо отрицательно, либо положи-

тельно заряженных носителей. Эта особенность полупроводников откры-

вает широкие возможности для практического применения.

Донорные примеси.

Оказывается, что при наличии примесей, например атомов мышьяка, даже при очень малой их концентрации, число свободных электронов возрастает во

много раз. Происходит это по следующей причине. Атомы мышьяка имеют пять валентных электронов, четыре из них участвуют в создании ковалентной связи данного атома с окружающими, например с атомами кремния. Пятый валентный электрон оказывается слабо связан с атомом. Он легко покидает атом мышьяка и становится свободным. Концентрация свободных электронов значительно возрастает, и становится в тысячу раз больше концентрации свободных электронов в чистом полупроводнике. Примеси, легко отдающие электроны называют донорными, и такие полупроводники являются полупроводниками n-типа. В полупроводнике n-типа электроны являютсн основныим носителями заряда, а дырки - неосновными.

Акцепторные примеси.

Если в качестве примеси использовать индий, атомы которого трехвалентны, то характер проводимости полупроводника меняется. Теперь для образования нормальных парноэлектронных связей с соседями атому индия не

достает электрона. В результате образуется дырка. Число дырок в крис-

талле равно числу атомов примеси. Такого рода примеси на-

зывают акцепторными (принимающими). При наличии электрического поля

дырки перемешаютс по полю и возникает дырочная проводимость. По-

лупроводники с преобладанием дырочкой проводимости над электрон-

ной называют полупронодниками р-типа (от слова positiv - положительный).

2.Основные полупроводниковые приборы (Строение и применение)

Существуют два основных полупроводниковых приборов: диод и транзистор.

В нястояшее время для выпрямления электрическигй тока в радиосхемах наряду с двухэлектродными лампами вся больше применяют полупроводниках диоды, так как они обладают рядом преимуществ. В электронной лампе носители заряда электроны возникают за счет нагревания катода. В p-n переходе носители заряда образуется при введении в кристалл акцепторной или донорной примеси.Таким образом, здесь отпадает необходимость источника энергии для получения носителей заряда. В сложных схемах экономия энергии, получается за счет этого, оказывается весьма значительной значительной. Кроме того, полупроводниковые выпрямители при тех же значениях выпрямленого тока более миниатюрны, чем ламповые.

Классификация полупроводниковых приборов и их назначение.

В промышленной электронике используют большое число различных типов полупроводниковых приборов, которые можно разделить на несколько основных групп: 1) полупроводниковые резисторы; 2) полупроводниковые диоды; 3) биполярные транзисторы; 4) поле­вые транзисторы; 5) тиристоры.

Полупроводниковые резисторы и диоды являются двухэлектродными приборами, биполярные и полевые транзисторы-трехэлектродными приборами. Тиристоры могут быть как двухэлектродными, так и трехэлектродными.

В полупроводниковых резисторах применяют изотропный (однородный) полупроводниковый материал, электрические свойства которого определяют электрические характеристики резистора. В полупроводниковых диодах используют полупроводники с различными типами электропроводности, образующие один р-n-переход. Электрические характеристики диода определяются в основном электрическими свойствами p-n-перехода.

В биполярных транзисторах полупроводники с различными типами электропроводности образуют два р-n -перехода. Электрические характеристики биполярных транзисторов обусловлены электрическими свойствами этих р-п-переходов и существенно зависят от их взаимодействия. Полевые транзисторы основаны на полупроводниках с различными типами электропроводности, которые образуют один р-n -переход. Но в отличие от диодов и биполярных транзисторов электрические характеристики полевых транзисторов зависят от взаимодействия изо­тропного полупроводникового канала с р-n -переходом.

В тиристорах применяют полупроводники с различными типами электропроводности, которые образуют три или более р- n -перехода. Основные электрические характеристики тиристоров определяются взаимодействием этих р- n -переходов.

Полупроводниковые диоды

Полупроводниковым диодом называют электропреобразовательный полупроводниковый прибор с одним электрическим переходом, имеющий два вывода.

Классификация и условное графическое обозначение полупроводниковых диодов приведены в табл. 2.2. Как видно из таблицы, все полупроводниковые диоды делятся на два класса: точечные и плоскостные.

В точечном диоде используется пластинка германия или кремния с электропроводностью n-типа, толщиной 0,1-0,6 мм и площадью 0,5-1,5 мм 2 ; с пластинкой соприкасается заостренная стальная проволочка (рис, 2.5), образующая р- n -переход в месте контакта.

Вольт-амперные характеристики точечного диода при различных температурах приведены на рис.

Из-за малой площади контакта прямой ток и междуэлектродная емкость таких диодов сравнительно невелики, что позволяет применять их в области очень высоких частот (СВЧ-диоды). Точечные диоды служат в основном для выпрямления переменного тока (выпрями­тельные диоды).

В плоскостных диодах р-n -переход образуется двумя полупроводниками с различными типами электропроводности, причем площадь перехода у различных типов диодов лежит в пределах от сотых долей квадратного миллиметра (микроплоскостные диоды) до нескольких десятков квадратных сантиметров (силовые диоды).

По способу внесения примесей диоды делят на сплавные и диффузионные.

Электрические характеристики плоскостного диода определяются характеристиками р-n -перехода. В зависимости от назначения диода в нем используются те или иные характеристики р-n –перехода.

Рассмотрим более подробно типы и характеристики различных плоскостных диодов.

Выпрямительный диод- полупроводниковый прибор, в котором так же, как и в точечном диоде, используются выпрямительные свойства р-n -перехода.

Конструкция мощного выпрямительного диода показана на рис. 2.7. Маломощные выпрямительные диоды, а также выпрямительные диоды, предназначенные для работы в высокочастотных и импульсных цепях, имеют, как правило, конструкцию, аналогичную точечным диодам.

Вольтамперная характеристика мощного выпрямительного диода приведена на рис. 2.8.

Благодаря большой площади перехода плоскостные диоды рассчитаны на большой прямой ток. Обычно прямое напряжение диода не превышает 1-2 В, при этом плотность тока в полупроводнике достигает 1-10 А/мм2, что вызывает некоторое повышение его температуры. Для сохранения работоспособности германиевого диода его температура не должна превышать 85-100° С. Кремниевые диоды могут работать при температуре 150-200° С.

При подаче на полупроводниковый диод обратного напряжения в нем возникает незначительный обратный ток (рис. 2.8), обусловленный движением неосновных носителей заряда через р-n -переход.

При повышении температуры р-n -перехода число неосновных носителей заряда увеличивается за счет перехода часта электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает.

В случае приложения к диоду обратного напряжения в несколько сотен вольт внешнее электрическое поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости (эффект Зенера). Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейший рост тока и, наконец, тепловой пробой (разрушение) р-n -перехода. Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7-0,8) U проб. Даже кратковременное повышение обратного напряжения сверх пробивного, как правило, приводит к пробою р-n -перехода и выходу диода из строя.

Основными параметрами точечных и плоскостных выпрямительных диодов являются: прямой ток диода I пр, который нормируется при оп­ределенном прямом напряжении (обычно 1-2 В). Максимально допустимый прямой ток диода I пр max , максимально допустимое обратное напряжение диода U обр max ; обратный ток диода I обр, который нормируется при максимальном обратном напряжении U обр max . Параметры различных выпрямительных диодов приведены в табл.

Полупроводниковый стабилитрон - полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который используется для стабилизации напряжения.

Полупроводниковый стабилитрон работает на участке электрического пробоя р-n -перехода. Для предотвращения теплового пробоя конструкция стабилитрона обеспечивает эффективный отвод тепла от р-n -перехода. Чаще всего материалом для стабилитронов служит кремний. Вольт-амперная характеристика полупроводникового стабилитрона приведена на рис.

Как видно из рис., в области пробоя напряжение на стабилитроне U CT лишь незначительно изменяется при больших изменениях тока стабилизации I CT . Такую характеристику стабилитрона применяют для получения стабильного напряжения, например в параметрических стабилизаторах напряжения.

Основными параметрами полупроводникового стабилитрона являются: стабилизирующее напряжение U CT ; динамическое сопротивление на участке стабилизации Rд = d U CT /dI CT ; минимальный ток стабилитрона I ст min ; максимальный ток ста­билитрона I ст max ; температурный коэффициент напряжения на участке стабилизации TKU = d U CT /dT 100%.

Стабилизирующее напряжение современных стабилитронов лежит в пределах 1-1000 В и зависит от толщины запирающего слоя р-n перехода.

Туннельный диод - полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт-амперных характеристиках при прямом напряжении участка отрицательной дифференциальной проводимости (см. рис.).

В качестве рабочей используют прямую ветвь в. а. х.

Материалом для туннельных диодов служит сильно легированный германий или арсенид галлия.

Основными параметрами туннельного диода являются: ток пика Iп (кривая1 на рис.) и отношение тока пика к току впадины Iп/Iв. Для выпускаемых отечественной промышленностью диодов Iп = 0,1-100 мА, а Iп / Iв =5 - 20.

Туннельные диоды являются быстродействующими полупроводниковыми приборами и применяются в генераторах высокочастотных колебаний и быстродействующих импульсных переключателях.

Обращенный диод - разновидность туннельного диода, у которого ток пика Iп = 0 (кривая 2 на рис.). Если к обращенному диоду приложить прямое напряжение Uпр < 0,3 В, то пряой ток диода Iпр = 0, в то же время даже при небольшом обратном напряжении (порядка десятков милливольт) обратный ток диода достигает нескольких миллиампер в результате туннельного пробоя. Таким образом, обращенный диод обладает вентильными свойствами при малых напряжениях именно в той области, где обычные выпрямительные диоды этими свойствами не обладают. При этом направлением наибольшей проводимости является направление, соответствующее обратному току.

Обращенные диоды применяют, как и туннельные диоды в импульсных устройствах, а также в качестве преобразователей сигналов (смесителей и детекторов) в радиотехнических устройствах.

Варикап - полупроводниковый диод, в котором используется зависимость емкости

р-n -перехода от обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой величиной емкости. Полупроводниковым материалом для изготовления варикапов является кремний. Зависимость емкости варикапа от обратного напряжения показана на рис.

Основными параметрами варикапа являются: общая емкость варикапа Св, которая фиксируется обычно при небольшом обратном напряжении Uo6p = 2-5 В; коэффициент перекрытия по емкости Кс = Cmax/Cmin, Для большинства варикапов Св = 10-500 пФ, а коэффициент перекрытия по ем­кости Кс = 5-20.

Варикапы применяют в системах дистанционного управления и в параметрических усилителях с малым уровнем собственных шумов.

Ф о.т о д и о д, фотоэлемент полупроводниковый, светодиод - полупроводниковые диоды, использующие эффект взаимодействия излучения (видимого, инфракрасного или ультрафиолетового) с носителями заряда (электронами и дырками) в запирающем слое р-n перехода.